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Lyndon Words

An important class of finite words is that of Lyndon words.

In what follows, we let < denote the lexicographic order.

Proposition 1

For every word w, u, v ∈ Σ∗, we have u < v if and only if wu < wv.

Moreover, if u is not a prefix of v, then for every word z ∈ Σ∗ we have

u < v if and only if uw < vz.

One could be tempted to state that u < v if and only if uw < vw for any

word w. However, this is not true in general. For example, 01 < 010 but

01 · 1 6< 010 · 1.
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Lyndon Words

Definition 2

Let Σ be a totally ordered alphabet. A nonempty word w ∈ Σ∗ is a

Lyndon word if it is lexicographically smaller than each of its proper

suffixes, i.e., for every factorization w = uv in two nonempty words, one

has w < v.

In particular, letters are Lyndon words (trivially) and every Lyndon word

is primitive.
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Lyndon Words

Theorem 3

Let w be a primitive word. The following are equivalent:

1 For every factorization w = uv in two nonempty words, uv < v;

2 For every factorization w = uv in two nonempty words, uv < vu;

3 For every factorization w = uv in two nonempty words, u < v;

4 For every factorization w = uv in two nonempty words, u < vu.

Notice that the conditions:

For every factorization w = uv in two nonempty words, u < uv;

and

For every factorization w = uv in two nonempty words, v < vu;

are true for any word, not just for Lyndon words.
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Lyndon Words

Remark 4

The statement of the previous theorem cannot be written as:

Let w be a primitive word, and let w = uv be a factorization of w in two

nonempty words. The following are equivalent:

1 uv < v;

2 uv < vu;

3 ...

Indeed, this is not true in general. Take for example w = 01001, and the

factorization w = uv with u = 010 and v = 01; then uv = 01001 is

smaller than vu = 01010, yet it is not smaller than v = 01.
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Lyndon Words

Theorem 5

Let w be a primitive word. The following are equivalent:

1 For every factorization w = uv in two nonempty words, uv < v;

2 For every factorization w = uv in two nonempty words,

(uv)ω < (vu)ω;

3 For every factorization w = uv in two nonempty words, (uv)ω < vω;

4 For every factorization w = uv in two nonempty words, (vu)ω < vω;

5 For every factorization w = uv in two nonempty words, uω < vω;

6 For every factorization w = uv in two nonempty words, uω < (vu)ω;

7 For every factorization w = uv in two nonempty words, vω < (vu)ω;

8 For every factorization w = uv in two nonempty words, uω < (uv)ω.

Remark 6

It is not true, in general, that u < v implies uω < vω. For example,

01 < 010, but (010)ω < (01)ω.
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Lyndon Words

Every Lyndon word is not only primitive but also unbordered. Conversely,

every nonempty primitive word has a conjugate that is a Lyndon word.

As a byproduct, every primitive word has a conjugate that is unbordered

(as we already saw).

But one can prove that reversing the order on Σ, the Lyndon conjugate

with respect to the reverse order cannot coincide with the Lyndon

conjugate of the previously fixed order, provided that the word is not of

length 1. So, every primitive word of length > 1 has at least two

unbordered conjugates.

For example, over Σ = {a, b} with a < b, take the primitive word abaabb.

Its conjugate aabbab is Lyndon. For the order b < a, the Lyndon

conjugate is bbabaa.
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Lyndon Words

Example 7

The first few Lyndon words over Σ = {a, b}, with a < b, are:

a, b,

ab,

aab, abb,

aaab, aabb, abbb,

aaaab, aaabb, aabab, aabbb, ababb, abbbb.
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Lyndon Words

Proposition 8

For every words u, v, with v nonempty, and every n ≥ 1, unv is a Lyndon

word if and only if uv is a Lyndon word.

Proposition 9

If u and v are Lyndon words, and u < v, then uv is a Lyndon word.

Conversely, for every Lyndon word w of length at least 2 there exist

Lyndon words u, v, with u < v, such that w = uv.

For example, aabb can be written as a · abb. Note that aabb can also be

written as aab · b, so the factorization in the previous proposition is not,

in general, unique.
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Generating Lyndon Words

The set of Lyndon words of length ≤ n can be constructed recursively by

the following algorithm, which makes use of Proposition 8: Start with

X1 = Σ; assuming Xi is already constructed, take the least word xi in

Xi and define

Xi+1 = Xi\{xi}∪{w : |w| ≤ n and w = xki xj for some k ≥ 1 and j 6= i}.

For example, over Σ = {a, b}, with a < b, for n = 4 one has:

X1 = {a, b}
X2 = {aaab, aab, ab, b}
X3 = {aab, ab, b}
X4 = {aabb, ab, b}
X5 = {ab, b}
X6 = {abb, b}
X7 = {abbb, b}
X8 = {b}
Then we stop since no new word is created after this iteration. The set of

Lyndon words of length ≤ n is given by the union of the sets Xi.
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Counting Lyndon Words

The number of Lyndon words of length n is equal to the number of

conjugacy classes of primitive words of length n, and we saw that this

number is given by Witt’s formula

1

n

∑
d|n

µ(d) |Σ|n/d

where µ is the Möbius function.

If |Σ| = 2, then number of Lyndon words of length n is asymptotically

2n

n

(
1 +O(2−n/2)

)
.

The simple fact that there are exponentially many Lyndon binary words

of length n follows immediately from the observation that for any word w

of length n, the word anwb is a Lyndon word of length 2n+ 1.

Therefore, there are at least 2n binary Lyndon words of length 2n+ 1.
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Lyndon Factors of a Lyndon Word

The minimum number of distinct Lyndon factors in a word of length n is

1 (consider for instance the word an). But what is the minimum number

of distinct Lyndon factors in a Lyndon word?

Saari in 2014 proved that if w is a Lyndon word with |w| ≥ Fn for some

n ≥ 3, where Fn is the nth Fibonacci number, then w contains at least n

distinct Lyndon factors. Therefore, every Lyndon word of length n

contains at least 1 + dlogϕ ne distinct Lyndon factors.

This bound is tight, as it is realized by Lyndon factors of the Fibonacci

word, which have length Fn and contain n distinct Lyndon factors.

For example, 00100101 is a Lyndon factor of the Fibonacci word; it has

length 8 = F6 and contains 6 distinct Lyndon factors, namely

0, 1, 01, 001, 00101, 00100101.

Conversely, all words of the form anbn (which are Lyndon) have the

maximum number of Lyndon factors among all binary words of length 2n.
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Lyndon Sesquipowers

Powers of Lyndon words (e.g., abab or bbb) are precisely those words w

such that w is smaller than or equal to every its proper or conjugate.

They are sometimes called necklaces (meaning that they can be chosen

as representatives of a conjugacy class when the order is fixed), while

Lyndon words are also called aperiodic necklaces.

Let us now consider periodic extensions (i.e., fractional powers) of

Lyndon words, e.g., aab · aab · a. They are prefixes of powers of Lyndon

words and are called Lyndon sesquipowers (or also preprime words, in

those contexts in which Lyndon words are called prime words).

Let b be the largest letter of the alphabet. Then bn, for n > 1, cannot be

the prefix of a Lyndon word. But any other periodic extension of a

Lyndon word is indeed a prefix of a Lyndon word. Let us call Lyndon

prefixes the words that are prefixes of Lyndon words. So,

Lyndon prefixes = Lyndon sesquipowers \ {bn | n > 1}.
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Lyndon Sesquipowers

As a consequence, in order to construct the set of Lyndon sesquipowers

of length n, or the set of Lyndon prefixes of length n (the latter is

obtained from the former by removing the word bn), it is sufficient to

take the set of Lyndon words of length ≤ n and extend each of them

them periodically up to a word of length n.

For example, taking the set of Lyndon words of length ≤ 4, we have that

the set of Lyndon sesquipowers of length 4 over Σ = {a, b}, a < b, is

Y = {aaaa, aaab, aaba, abab, aabb, abba, abbb, bbbb}

and the set of Lyndon prefixes of length 4 is Y \ {bbbb}.

Remark 10

Notice that in the previous set, the Lyndon words are precisely the

unbordered elements. Indeed, a prefix of a Lyndon word is a Lyndon word

if and only if it is unbordered.
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Lyndon Sesquipowers

Another corollary is the following.

Proposition 11

Let wa, w ∈ Σ∗, a ∈ Σ, be a prefix of a Lyndon word and b a letter

greater than a. Then wb is a Lyndon word.
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Standard Factorization

The factorization of Proposition 9 is not, in general, unique. So we define

a standard factorization as follows.

Definition 12

The (right) standard factorization of a Lyndon word w of length > 1 is

w = uv, where v is the lexicographically least proper suffix of w (or,

equivalently, the longest proper suffix of w that is a Lyndon word).

For example, the standard factorization of aabb is a · abb.
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Standard Factorization

Let us show that the longest proper suffix of w that is a Lyndon word,

vLyn, coincides with the lexicographically least proper suffix of w, vmin.

Since both are suffixes of w, one is a suffix of another. But vmin cannot

be a proper suffix of vLyn, otherwise vLyn would have a proper suffix

lexicographically smaller than itself, against the definition of Lyndon

word. Hence vLyn is a suffix of vmin. But vmin is a Lyndon word — since

it is smaller than all its suffixes — and vLyn, the longest Lyndon suffix of

w, cannot be shorter than vmin, whence vLyn and vmin coincide.

Exercise 13

Prove that the words u and v in the standard factorization are both

Lyndon words.

Gabriele Fici Combinatorics on Words



Standard Factorization

There is also a left standard factorization of a Lyndon word w

(a.k.a. Viennot factorization).

It is the factorization w = uv, where u is the longest proper prefix of w

that is a Lyndon word (but not the lexicographically least proper prefix of

w, which is always a single letter).

The left and right standard factorizations do not coincide, in general. For

example, the left standard factorization of aabb is aab · b.
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Lyndon Tree

The standard factorization induces a binary tree structure on a Lyndon

word w, in which the root is w and the children of a factor w′ of length

greater than 1 are the words in the standard factorization of w′. The

leaves of the tree are single letters.

a b a b a a b a a b b b a aw =
3 10

Figure 4: Example of a run w[3, 10] in the string w = ababaabaabbbaa.

a a a b a b a a b b a b b

Figure 5: The Lyndon tree LTree0(w) of a Lyndon word w = aaababaabbabb.

Appendix

Example of a Run
The figure below shows an example of a run with period 3 in a string. This string contains also other runs,
e.g. w[10, 12] with period 1 and w[1, 5] with period 2.

Example of a Lyndon Tree
A Lyndon tree of a Lyndon word is obtained by applying standard factorization recursively on the Lyndon
word. The figure below presents an example of a Lyndon tree. In the algorithm each node stores an interval
describing the factor of w that it corresponds to.

12

Figure: The Lyndon tree of the Lyndon word w = aaababaabbabb.
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Lyndon Tree

Note that any word w can be made Lyndon by prepending to it a sentinel

symbol # that is smaller than every other letter of the alphabet.JID:TCS AID:11708 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.242; Prn:28/08/2018; 15:31] P.4 (1-9)

4 M. Crochemore, L.M.S. Russo / Theoretical Computer Science ••• (••••) •••–•••

Fig. 4. Lyndon tree.

LeftChild and therefore its Parent, when it gets inserted, is the corresponding NNS value. Recall our example when the 
value of x[6] = 5 is inserted into the tree it becomes the LeftChild of node 11 (with x[11] = 3) therefore NNS[6] = 11. 
Note also in this example that when x[6] is processed we have that the node 8 (with x[8] = 6) was a LeftChild of 
node 11 (with x[11] = 3) before the insertion but becomes a RightChild after the insertion. Still the value NNS[8] = 11
is not altered by this procedure. Algorithm 2 is a modification of Algorithm CartesianTree that uses this information to 
obtain the NNS values. Likewise it also runs in linear time.

Algorithm 2 Compute NNS table.
NextNearestSmaller(x non-empty sequence of numbers of length n)

1 (x[n],NNS[n − 1]) ← (−∞,n)

2 for i ← n − 2 downto 0 do
3 j ← i + 1
4 while x[i] < x[ j] do
5 j ← NNS[ j]
6 NNS[i] ← j
7 return NNS

3. Lyndon tree

Lyndon trees are associated with Lyndon words. Recall that a Lyndon word is a non-empty word lexicographically smaller 
than all its proper non-empty suffixes. The Lyndon tree of a Lyndon word y corresponds recursively to the following Lyndon 
(or standard) factorisation of y. If y is not a single letter, y can be written uv where v is chosen as the smallest proper 
non-empty suffix of y. The word u is then also a Lyndon word (see [13]).

Fig. 4 shows the Lyndon tree of the word #abbabaababbabaab.
Algorithm LyndonTree builds the Lyndon tree of a Lyndon word y. The hypothesis that y is a Lyndon word is not 

a significant restriction because any word can be turned into a Lyndon word by prepending to it a letter smaller than 
all letters occurring in it. We use the symbol # for this purpose in our examples. Otherwise, since any word factorises 
uniquely into Lyndon words, the algorithm produces the forest of Lyndon trees of the factors. We show the pseudo-code in 
Algorithm 3.

The algorithm proceeds naturally from right to left on y to find the longest Lyndon word starting at each position i. It 
applies a known property: if u and v are Lyndon words and u < v then uv is also a Lyndon word and satisfies u < uv < v .

To facilitate the presentation, variable u stores a phrase, that is, the occurrence of a Lyndon factor of y though the 
position of the factor is not explicitly given, and T (u) is the Lyndon tree associated with this occurrence. Idem for v .

Algorithm 3 Build Lyndon tree.
LyndonTree(y)

1 ◃ y is a Lyndon word of length n
2 (v, T (v)) ← (y[n − 1], (y[n − 1]))
3 for i ← n − 2 downto 0 do
4 (u, T (u)) ← (y[i], (y[i]))
5 while u < v do
6 T (uv) ← (new node, T (u), T (v))

7 u ← uv
8 v ← next phrase, empty word if none
9 return T (y)

Figure: The Lyndon tree of the Lyndon word w = #abbabaababbabaab.
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Lyndon Tree

Given a sequence S, one can define the Cartesian tree of S as the

ordered binary tree whose nodes are the elements of S, the root is the

node labeled by the least element, and an inorder traversal of the tree

produces S.
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Lyndon Tree

Therefore, the left subtree of a node i contains all the elements of S that

appear in S to the left of i, and the right subtree of i contains all the

elements of S that appear in S to the right of i.
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Lyndon Tree

As a consequence, the labels of the nodes in the subtree of i are all

greater than i.
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Lyndon Tree

Another property of the Cartesian tree is the following. Given i and j,

the minimum value in the subsequence of S between i and j is the value

of the node that is the lowest common ancestor between nodes i and j.
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Lyndon Tree

Any sequence S can be associated with its corresponding Cartesian tree

CT (S) according to the following rules:

If S is empty, then CT (S) is an empty tree.

If S is not empty and S[i] is the minimum value in S, then CT (S) is

the tree with S[i] as the root, CT (S[1, . . . , i−1]) as the left subtree,

and CT (S[i+ 1, . . . , n]) as the right subtree. If there are two or

more minimum values, we choose the leftmost one as the root.
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Lyndon Tree

Theorem 14 (Hohlweg, Reutenauer, 2003)

Let w be a Lyndon word. Let 1π be the permutation associated with the

ranking of the suffixes of w (a.k.a. the Inverse Suffix Array of w). Then,

the Lyndon tree of w, after removing the leaves, coincides with the

Cartesian tree of π.

For example, let w = aaababaabbabb. Its suffix ranking permutation is

ISA(w) = 1π = [1, 2, 5, 10, 4, 9, 3, 7, 13, 11, 6, 12, 8].

1

2

3

4 6

5 9 7
8

10 11 12

a

a

a b
a

a

a b a

13

b

b b

b
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Lyndon Tree

Therefore, starting from the left and separating recursively the array

ISA(w) taking the smallest value in the range, we get the Lyndon tree

of w, corresponding to the parentheses representation

(a)(aababaabbabb)

(a)((aabab)(aabbabb))

(a)(((aab)(ab))((aabb)(abb)))

(a)((((a)(ab))((a)(b)))(((a)(abb))((ab)(b))))

(a)((((a)((a)(b)))((a)(b)))(((a)((ab)(b)))(((a)(b))(b))))

(a)((((a)((a)(b)))((a)(b)))(((a)(((a)(b))(b)))(((a)b)(b))))

Remark 15

For binary words, it is possible to retrieve w from its ISA by writing for

each position i the letter a if the value at i is smaller than the value at

i+ 1 or b otherwise (and putting a b in the last position).
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Lyndon Array

Given a word w, the Lyndon array λ(w) is the array such that λ[i] is the

length of the longest Lyndon factor of w that starts at position i.

For example, if w = abaababaab, then λ(w) = [2, 1, 5, 2, 1, 2, 1, 3, 2, 1].

Let us define the Next Smaller Value array of a permutation π of [1 . . . n]

as the array NSV whose i-th entry is the distance between i and the

smallest index greater than i such that π[j] < π[i], if such a j exists, or

NSV [i] = n+ 1− i (the distance between i and n+ 1) otherwise.

Theorem 16

The Lyndon array of w coincides with the Next Smaller Value array of

the permutation associated with the ranking of the suffixes of w (the

ISA of w).

For example, let π = ISA(abaababaab) = [5, 9, 2, 6, 10, 4, 8, 1, 3, 7].

Then

NSV [π] = [2, 1, 5, 2, 1, 2, 1, 3, 2, 1].
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Lyndon Factorization

Theorem 17

Any word factorizes uniquely in non-increasing Lyndon words. This

factorization is called the Lyndon factorization of w.

For example, let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon

factorization of w is

ab · aaaab · aaaaabaaaab · aaaaaab.

The Lyndon factorization of a word w can be computed by taking the

longest prefix that is a Lyndon word and recurse on the word obtained by

removing this prefix.

Equivalently, it can be computed by taking the lexicographically smallest

nonempty suffix and recurse on the word obtained by removing this suffix.
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Lyndon Factorization

As a consequence of the theorem of Hohlweg and Reutenauer, the

Lyndon factorization of w can be computed from its ISA, starting from

the first position and by searching iteratively for the next position in

which the value is smaller.

For example, for w = abaababaab, the ISA is [5, 9, 2, 6, 10, 4, 8, 1, 3, 7].

The Lyndon factorization of w is

ab · aabab · aab.

The ISA of w = abaaaabaaaaabaaaabaaaaaab is

[20, 25, 6, 10, 14, 18, 23, 3, 7, 11, 15, 19, 24, 5, 9, 13, 17, 22, 1, 2, 4, 8, 12, 16, 21]

and the Lyndon factorization is

ab · aaaab · aaaaabaaaab · aaaaaab.
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Lyndon Factorization

The Lyndon factorization can be defined for infinite words as well. It is

defined by taking the longest (possibly infinite) prefix that is Lyndon, and

recurse on the suffix that remains.

For example, let w1 = 011, w2 = 01 and for every n > 1, wn+1 the word

obtained by rotating by one position the word τ(wn) (that is, removing

the last letter and putting it in front of the word), where τ is the

Thue–Morse morphism 0 7→ 01, 1 7→ 10.

w1 = 011

w2 = 01

w3 = 0011

w4 = 00101101

w5 = 0010110011010011

Then, the Lyndon factorization of the Thue–Morse word t is

t =
∏
n≥1

wn = 011 · 01 · 0011 · 00101101 · 0010110011010011 · · ·
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de Bruijn Words

A de Bruijn word of order n on an alphabet Σ of size k is a circular word

such that every word of length n on k letters appears exactly once as a

factor.

For example, aaababbb is a de Bruijn word of order 3.

If one wants a linear word with the same property, it is sufficient to

concatenate a de Bruijn word with its prefix of length n− 1.
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de Bruijn Words

One way to generate a de Bruijn word is given by the following

remarkable theorem.

Theorem 18 (Fredricksen, Maiorana, 1978)

The lexicographically least de Bruijn word of order n is obtained by

concatenating in increasing lexicographic order the Lyndon words of

length dividing n.

For example, if n = 4 and Σ = {a, b}, then

aaaabaabbababbbb = a · aaab · aabb · ab · abbb · b

is the least binary de Bruijn word of order 4.
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de Bruijn Words

There is an interesting extension of the theorem of Fredericksen and

Maiorana. A generalized de Bruijn word of order n on k letters is a

circular word such that every primitive word of length n on k letters

appears exactly once as a factor.

Theorem 19 (Au, 2015)

The lexicographically least generalized de Bruijn word of order n is

obtained by concatenating in increasing lexicographic order the Lyndon

words of length n.

So, for example, if n = 4 and Σ = {a, b}, then

aaabaabbabbb = aaab · aabb · abbb

is the least generalized de Bruijn word of order 4 over Σ. The primitive

words of length 4 over Σ are: aaab, aaba, aabb, abaa, abba, abbb, baaa,

baab, babb, bbaa, bbab and bbba.
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de Bruijn Words

The de Bruijn graph of order n > 1 over an alphabet Σ of cardinality k is

the directed graph whose nodes are the words over Σ of length n and

there is an edge from u to v if removing the first letter of u produces a

prefix of v (the label of the edge is the last letter of v).

The de Bruijn graph of order n has kn nodes and kn+1 edges, it is

strongly connected, and every node has indegree and outdegree k.

Therefore, it is an Eulerian graph. It is also Hamiltonian.

Theorem 20

The set of de Bruijn words of order n+ 1 is equal to the set of labels of

Eulerian cycles in the de Bruijn graph of order n. It is also equal to the

set of labels of Hamiltonian cycles in the de Bruijn graph of order n+ 1.

Using the previous theorem, it is possible to prove that there are

(k!)
kn−1

kn
distinct de Bruijn words of order n on k letters.
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de Bruijn Words
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aa

ab

ba

bba b

b b

aa

b a

Figure 1.5.6
The de Bruijn graph of order n= 3.

aaa

aab

aba

abb

baa

bab

bba

bbba

b a

b

a

b

a

b

b

a

a

b

a

b a

b

Figure 1.5.7
The de Bruin graph of order n= 4

cycle if it uses each edge of the graph exactly once. A finite graph is Eulerian if it
has an Euler cycle.

It is easy to verify that the de Bruijn cycles of order n are the labels of Euler
cycles in the de Bruijn graph of order n. The following result shows the existence of
de Bruijn cycles of any order.

Theorem 1.5.1 A strongly connected finite graph is Eulerian if and only if each
vertex has an indegree equal to its outdegree.

Proof. The condition is necessary since an Euler cycle enters each vertex as many
times as it comes out of it.

Conversely, we use an induction on the number of edges of the graph G. If there
are no edges, the property is true. LetC be a cycle with the maximal possible number
of edges not using twice the same edge. Assume that C is not an Euler cycle. Then,
since G is strongly connected, there is a vertex x which is on C and in a non-trivial
strongly connected component H of G\C. Every vertex of H has an indegree equal
to its outdegree. So, by induction hypothesis, H contains an Eulerian cycle D. The
cycles C and D have a vertex in common and thus can be combined to form a cycle
larger thanC, a contradiction.

Figure: The de Bruijn graph of order 3 over Σ = {a, b}. One can verify that

the de Brujn word of order 3 aaababbb is indeed the label of a Hamiltonian

cycle (starting from node bbb), and that the de Brujn word of order 4

aaaabaabbababbbb is indeed the label of an Eulerian cycle (always starting from

node bbb).
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Finite Sturmian Words

Definition 21

A finite or infinite word w over Σ2 is C-balanced for an integer C ≥ 1 if

and only if for every factors of w of the same length u and v, one has

||u|0 − |v|0| ≤ C, that is, the number of 0s (or, equivalently, 1s) in two

factors of the same length differ at most by C.

For example, the Thue–Morse word is 2-balanced but not 1-balanced; the

Fibonacci word is 1-balanced.

We now take a closer look at finite 1-balanced words over Σ2, i.e., finite

factors of Sturmian words.
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Finite Sturmian Words

Binary 1-balanced finite words are called finite Sturmian words.

We let St denote the set of finite Sturmian words.

de Luca and De Luca gave some characterizations of finite Sturmian

words. For a nonempty word w, let ρw denote its fractional root,

πw = |ρw| its minimum positive period, and Rw the least integer k such

that w has no right special factor of length k.

Theorem 22

Let w be a nonempty word. The following conditions are equivalent:

w is a finite Sturmian word;

ρw is a conjugate of a standard Sturmian word;

πw = 1 +Rρ2w .
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Finite Sturmian Words

The following are characterizations of the words w such that w2 is

Sturmian (such words are sometimes called circularly balanced).

Proposition 23

The following conditions are equivalent:

1 w2 is Sturmian;

2 wn is Sturmian for every n ≥ 0;

3 every conjugate of w2 is Sturmian;

4 every conjugate of w is Sturmian;

5 w is Sturmian and it is either non-primitive or a conjugate of a

Lyndon Sturmian word.
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Finite Sturmian Words

On the other hand, we have a characterization of binary words that are

not Sturmian.

Proposition 24

Let w ∈ Σ∗2. Then w is not Sturmian if and only if there exists a

palindrome v such that 0v0 and 1v1 are both factors of w.

The pair (0v0, 1v1) of the previous proposition is called an unbalanced

pair.

Proposition 25 (Dulucq, Gouyou-Beauchamps, 1987)

The language of binary words that are not Sturmian (i.e., that contain an

unbalanced pair) is context-free.
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Sturmian Morphisms

A Sturmian morphism is a morphism such that all images of finite

Sturmian words are Sturmian.

Clearly, the identity morphism id and the morphism E that maps 0 to 1

and 1 to 0 are Sturmian morphisms. Moreover, a composition of

Sturmian morphisms is a Sturmian morphism, so Sturmian morphisms

constitute a monoid, called the Sturm monoid (or Sturmian monoid).

This monoid is generated by E, ϕ and ϕ̃, where ϕ : 0 7→ 01, 1 7→ 0 and

ϕ̃ : 0 7→ 10, 1 7→ 0 are, respectively, the Fibonacci morphism and the

reverse Fibonacci morphism.
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Sturmian Morphisms

Recall that the incidence matrix of the endomorphism of Σ2

µ : 0 7→ u, 1 7→ v is Mµ =

(|u|0 |v|0
|u|1 |v|1

)
.

Theorem 26

A matrix M ∈ N2×2 is the incidence matrix of a Sturmian morphism if

and only if det(M) = ±1, i.e., if and only if it is invertible.

So, the subset of matrices of GL2(Z) with nonnegative entries is a

representation of the Sturm monoid.
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Sturmian Morphisms

Sturmian morphisms have also the following local property:

Theorem 27 (Berstel, Séébold, 1994)

A morphism µ is Sturmian if and only if it is acyclic (i.e., µ(01) 6= µ(10))

and µ(10010010100101) is Sturmian.

Sturmian morphisms can also be used to give another characterization of

circularly balanced words.

Proposition 28

A primitive binary word w is circularly balanced if and only if w = µ(0)

for some Sturmian morphism µ.
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Central Words

Definition 29

A word having coprime periods p and q and length p+ q − 2 is called a

central word.

Note that a word having coprime periods p and q and length greater than

p+ q − 2 must be a power of a single letter by the theorem of Fine and

Wilf.

Central words are in fact Sturmian words.
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Central Words

Central words have several characterizations.

Proposition 30

Let v be a word in Σ2. The following are equivalent:

1 v is a central word;

2 v is a bispecial factor of some Sturmian word;

3 the words 0v1 and 1v0 are conjugate;

4 v is a palindrome and v01 is the product of two palindromes;

5 0v1 and 1v0 are balanced;

6 v is a palindrome and v0 and v1 are balanced;

7 v is a power of a single letter or there exist P and Q such that

v = PxyQ = QyxP , where {x, y} = Σ2. Moreover, in this latter

case, P and Q are central words.
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Central Words

As a consequence of the previous proposition, we have the following

Lemma 31

If v is a central word, then so is vn for every n ≥ 1.

To construct a central word with periods p and q, take p′ and q′, the

multiplicative inverses of p and q modulo p+ q, sort the positive

multiples of p′ and q′ smaller than p′q′, then write 0 for each multiple of

p′ and 1 for each multiple of q′.

Example 32

Let p = 4, q = 7. Then p′ = 3 and q′ = 8, since 3 · 4 = 1 mod 11 and

7 · 8 = 1 mod 11. The central word having periods 4 and 7 (and length

4 + 7− 2) is, up to renaming letters, the word 001000100.

3 6 8 9 12 15 16 18 21

0 0 1 0 0 0 1 0 0
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Standard Words

A standard word is a Sturmian word of the form vxy, with v a central

word and xy ∈ {01, 10}.

Standard words are precisely the words that appear in some standard

sequence (of a characteristic Sturmian word).

For example, Fibonacci finite words are standard words.
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Standard Words

Another way to define standard words, in a recursive fashion, is by

defining the standard pairs. The pair (0, 1) is a standard pair; if (u, v) is

a standard pair, then so are the pairs (u, uv) and (vu, v). Standard words

are then those that appear in a standard pair.

Figure: The tree of standard pairs.
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Special Sturmian Words

If one considers extensibility within the set St of Sturmian words, one can

define left special Sturmian words (resp., right special Sturmian words) as

those words w over the alphabet Σ2 = {0, 1} such that 0w and 1w

(resp., w0 and w1) are both Sturmian words.

For example, the word 001 is left special since 0001 and 1001 are both

Sturmian words, but is not right special since 0011 is not a Sturmian

word.

The Sturmian words that are both left and right special are called

bispecial Sturmian words. They are of two kinds:

1 strictly bispecial Sturmian words (SBS), that are the words w such

that 0w0, 0w1, 1w0 and 1w1 are all Sturmian words (e.g. 00), or

2 non-strictly bispecial Sturmian words (NBS) otherwise (e.g. 01).
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Special Sturmian Words

Theorem 33 (Berstel, de Luca, 1997)

A word u is a strictly bispecial Sturmian word if and only if 0u1 is a

balanced Lyndon word.

This correspondence in fact holds more generally between bispecial

Sturmian words and (powers of) balanced Lyndon words. More precisely,

one has:

Theorem 34

A word u is a bispecial Sturmian word if and only if there exist letters

x, y in {0, 1} such that xuy is a power of a balanced Lyndon word or the

reversal of a power of a balanced Lyndon word.

For example, u = 01010010 is bispecial but not strictly bispecial, since

1u0 is not Sturmian; we have 0u1 = (00101)2.
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Special Sturmian Words

As a corollary, we have that a bispecial Sturmian word is strictly bispecial

if and only if it is a palindrome (hence a central word).

Since each central word of length n is associated with a pair (p, q) of

coprime periods such that p+ q = n+ 2, there are ϕ(n+ 2) strictly

bispecial Sturmian words of length n, where ϕ is the Euler totient

function. That is,

SBS(n) = ϕ(n+ 2).
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Special Sturmian Words

Let w be a right special Sturmian word of length n > 1. If w is strictly

bispecial, then 0w and 1w are right special Sturmian words of length

n+ 1, otherwise only one between 0w and 1w is a right special Sturmian

word of length n+ 1.

Therefore, the number RS(n) of right special Sturmian words of length n

verifies RS(n+ 1) = SBS(n) + RS(n) = RS(n) + ϕ(n+ 2), hence

RS(n+ 1) = RS(1) +

n+1∑
i=2

ϕ(i+ 1).

Since RS(1) = 2 = ϕ(1) + ϕ(2), we obtain

RS(n) =

n+1∑
i=1

ϕ(i).
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Special Sturmian Words

Let w be a Sturmian word of length n > 1. If w is right special, then w0

and w1 are Sturmian words of length n+ 1, otherwise only one between

w0 and w1 is a Sturmian word of length n+ 1.

Therefore, we have St(n+ 1) = RS(n) + St(n), and hence, since

St(1) = 2,

St(n) = 2 +

n∑
i=2

i∑
j=1

ϕ(j) = 1 +

n∑
i=1

i∑
j=1

ϕ(j) = 1 +

n∑
i=1

(n+ 1− i)ϕ(i).
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Counting Sturmian Words

So we proved the following

Theorem 35

The number of balanced binary words (i.e., finite Sturmian words) of

length n is

St(n) = 1 +

n∑
i=1

(n+ 1− i)ϕ(i)

where ϕ is the Euler’s totient function, that is the function that counts

the number of integers between 1 and n that are coprime with n.

Essentially, St(n) is the sequence whose second difference is ϕ(n+ 2),

where ϕ is the Euler totient.
n 1 2 3 4 5 6 7 8 9 10 11 12

St(n) 2 4 8 14 24 36 54 76 104 136 178 224

RS(n) 2 4 6 10 12 18 22 28 32 42 46 58

ϕ(n+ 2) 2 2 4 2 6 4 6 4 10 4 12 6
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Christoffel Words

Infinite Sturmian words can be viewed as the digital approximations of

Euclidean straight lines in the plane.

Given a point (p, q) in the grid Z×Z, with p, q > 0, there exists a unique

path that approximates from below (resp., from above) the Euclidean

segment joining the origin (0, 0) to the point (p, q). If one encodes

horizontal and vertical unitary segments with the letters 0 and 1

respectively, one obtains the lower (resp. upper) Christoffel word, denoted

by wp,q (resp., w′p,q), uniquely associated with the pair (p, q).
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Figure: The lower Christoffel word w8,5 = 0010010100101 (left) and the upper

Christoffel word w′
8,5 = 1010010100100 (right).
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Christoffel Words

By elementary geometrical considerations, one has that for any p, q > 0,

wp,q = 0u1 for some word u, and w′p,q = 1ũ0, where ũ is the reversal of

u. If (and only if) p and q are coprime, the words wp,q and w′p,q are

primitive.

If p and q are not coprime, the words wp,q and w′p,q are powers of

primitive Christoffel words.

Lemma 36

For every pair of coprime integers (p, q) the upper Christoffel word w′p,q is

the reversal of the lower Christoffel word wp,q.

In a geometrical sense, Christoffel words are the finite approximations of

mechanical words.
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Christoffel Words

Actually, Christoffel words can be defined in a purely arithmetic way:

Definition 37

Let n > 0 and p, q > 0 be coprime integers such that p+ q = n. The

lower Christoffel word wp,q = w1w2 · · ·wn is the word defined by

wi = biq/(p+ q)c − b(i− 1)q/(p+ q)c

i.e.,

wi =

{
0 if iq mod (n) > (i− 1)q mod (n)

1 if iq mod (n) < (i− 1)q mod (n)

We call p/q the slope of wp,q.a

aIn the special case q = 0 we set the slope to be ∞.
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Christoffel Words

Example 38

Let p = 8 and q = 5. We have

{i5 mod (13) | i = 0, 1, . . . , 13} = {0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8, 0}.

Hence, the lower Christoffel word of slope 5/8 is w8,5 = 0010010100101.

Remark 39

Notice that at each step, either we add q, or we subtract p, and we have

all integers between 1 and n− 1 exactly once.

Gabriele Fici Combinatorics on Words



Christoffel Words

Analogously, one can define the upper Christoffel word

w′p,q = w′1w
′
2 · · ·w′n by

w′i =

{
0 if ip mod (n) < (i− 1)p mod (n)

1 if ip mod (n) > (i− 1)p mod (n)

Of course, the upper Christoffel word w′p,q is the best grid approximation

from above of the Euclidean segment joining (0, 0) to (p, q).

Example 40

Let p = 8 and q = 5. We have

{i8 mod (13) | i = 0, 1, . . . , 13} = {0, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 0}.

(Notice that the numbers are the complements to n of the numbers in

the sequence of the lower Christoffel word.) Hence, the upper Christoffel

word of slope 5/8 is w′8,5 = 1010010100100.
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Christoffel Words

From the definition, it follows that every point in the grid that belongs to

the path encoded by a primitive Christoffel word of slope q/p has

Euclidean distance smaller than
√

2 from the Euclidean segment joining

(0, 0) to (p, q).

Consider the sequence {iq mod (p+ q)}, for i = 0, 1, . . . , p+ q, defining

the lower Christoffel word wp,q. Each subsequent number in the sequence

is obtained by either adding q or subtracting p.

If we divide each term in the sequence by p, we get the sequence of

vertical distances between the endpoints of paths encoded by prefixes of

wp,q and the Euclidean segment joining (0, 0) to (p, q); if instead we

divide by
√
p2 + q2 (the length of the Euclidean segment) we get the

sequence of Euclidean distances.
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Christoffel Words

For example, for w7,4, the sequence {4i mod 11} is

{0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 0}

Taking for example i = 5, we get that the point (4, 1), which is the

endpoint of the path corresponding to the prefix 00100 of w7,4, has

vertical distance 9/7 ≈ 1.286 and Euclidean distance 9/
√

65 ≈ 1.116

from the Euclidean segment joining (0, 0) and (7, 4).
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Christoffel Words

In particular, the point S on the path representing wp,q that is closest to

the Euclidean segment (without lying on the segment itself) is at

distance 1/
√
p2 + q2, whereas the point S′ that is farthest from the

segment is always at distance (p+ q − 1)/
√
p2 + q2.

{0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 0}
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Christoffel Words

Christoffel words have several characterizations.

Proposition 41

Let avb be a word in Σ2, with {a, b} = Σ2. The following are equivalent:

1 avb is a (lower or upper) primitive Christoffel word;

2 v is a central word;

3 avb is balanced and unbordered;

4 0v1 is balanced and Lyndon (for the order 0 < 1);

5 avb is a conjugate of bva.

So, Christoffel words are precisely the unbordered Sturmian words, and

lower Christoffel words are precisely the Lyndon Sturmian words.
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Christoffel Words

So, central words are the “central” factors of primitive Christoffel words

of length ≥ 2.

Moreover, we have:

Proposition 42

Let wp,q = 0v1 be a primitive lower Christoffel word. The central word v

has periods p′ and q′, the multiplicative inverses of p and q modulo p+ q,

respectively (and length p′ + q′ − 2 = p+ q − 2).
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Christoffel Words

A geometric interpretation of the central word v in wp,q = 0v1 is the

following: it encodes the intersections of the Euclidean segment joining

(0, 0) to (p, q) (0 for a vertical intersection and 1 for a horizontal

intersection).

That is, the word v is the cutting sequence of the Euclidean segment

joining (0, 0) to (p, q).
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Christoffel Words

From the geometrical point of view, the lower and the upper Christoffel

words with a given Parikh vector encode the frontiers of the region

containing all Sturmian words with that Parikh vector (but there are also

other words).

Theorem 43

Let p, q > 0 and n = p+ q. Every finite Sturmian word with Parikh

vector (p, q) encodes a path that is contained in the region delimited by

the lower and the upper Christoffel words, i.e., stays at distance smaller

than
√

2 from the Euclidean segment joining (0, 0) to (p, q).
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Christoffel Words

Example 44

Out of the
(
7+4
4

)
= 330 binary words with Parikh vector (7, 4), only 112

of them encode paths that lie no more than
√

2 away from the Euclidean

segment joining (0, 0) to (7, 4), i.e., are contained in the region delimited

by the lower and the upper Christoffel words of Parikh vector (7, 4).

In particular, all 19 balanced words of slope 4/7 are among such

approximations of the segment.
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Christoffel Words

Proposition 45 (Borel, Laubie, 1993)

For every pair (p, q) of coprime positive integers, the lower Christoffel

word wp,q is the greatest (in the lexicographic order) Lyndon word having

Parikh vector (p, q).

For example, the Lyndon words of Parikh vector (7, 4) are, in

lexicographic order: 00000001111, 00000010111, 00000011011,

00000011101, 00000100111, 00000101011, 00000101101, 00000110011,

00000110101, 00000111001, 00001000111, 00001001011, 00001001101,

00001010011, 00001010101, 00001011001, 00001100011, 00001100101,

00001101001, 00001110001, 00010001011, 00010001101, 00010010011,

00010010101, 00010011001, 00010100011, 00010100101, 00010101001,

00011001001, 00100100101 = w7,4.
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Christoffel Words

The following proposition, which follows from Theorem 43, is in some

sense dual to Proposition 45.

Proposition 46

For every pair (p, q), the lower Christoffel word wp,q is the smallest (in

the lexicographic order) finite Sturmian word having Parikh vector (p, q).

For example, the 19 Sturmian words with Parikh vector (7, 4), in

lexicographic order, are:

w7,4 = 00100100101, 00100101001, 00101001001, 00101001010,

00101010010, 00101010100, 01001001001, 01001001010, 01001010010,

01001010100, 01010010010, 01010010100, 10001001001, 10010001001,

10010010001, 10010010010, 10010010100, 10010100100, 10100100100
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Christoffel Words

Recall that a word is conjugate to its reversal if and only if it is the

concatenation of two palindromes and that a primitive word cannot have

two factorizations as concatenations of two nonempty palindromes.

So we have:

Proposition 47

Every primitive Christoffel word has a unique factorization as a

concatenation of two palindromes.

This factorization is called the palindromic factorization.

For example, the palindromic factorization w7,4 = 00100100101 is

00100100 · 101.
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Christoffel Words

But since primitive lower Christoffel words are Lyndon words, we also

have that every primitive lower Christoffel word longer than 1 has a

unique factorization as a concatenation of two Lyndon words (actually,

two Christoffel words).

This factorization is called the standard factorization.

For example, the standard factorization w7,4 = 00100100101 is

001 · 00100101.
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Christoffel Words

Let wp,q = 0v1 be a lower Christoffel word. If the central word v is not a

power of a single letter, then there exist central words P and Q such that

v = P01Q = Q10P so that wa,b = 0v1 = 0P0 · 1Q1 = 0Q1 · 0P1.

Hence, we have the factorizations:

1 0v1 = 0P0 · 1Q1 (palindromic factorization);

2 0v1 = 0Q1 · 0P1 (standard factorization).

If instead v = 0n (the case v = 1n is analogous) we have:

1 0v1 = 0n+1 · 1 (palindromic factorization);

2 0v1 = 0 · 0n1 (standard factorization).
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Christoffel Words

The lengths of the two factors in both the palindromic and the standard

factorization of the primitive lower Christoffel word wp,q = 0v1 are

precisely the two coprime periods of the central word v whose sum is

p+ q, i.e., the multiplicative inverses of p and q modulo p+ q.

The two factorizations determine the point S and S′, respectively.

Figure: The standard factorization 0Q1 · 0P1 = 001 · 00100101 (left) and the

palindromic factorization 0P0 · 1Q1 = 00100100 · 101 (right) of the lower

Christoffel word w7,4. The point S determined by the standard factorization is

the closest to the Euclidean segment, while the point S′ determined by the

palindromic factorization is the farthest.
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