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Part 6: Classes of Finite Words




Lyndon Words

An important class of finite words is that of Lyndon words.

In what follows, we let < denote the lexicographic order.

Proposition 1

For every word w,u,v € ¥*, we have u < v if and only if wu < wv.

Moreover, if u is not a prefix of v, then for every word z € ¥* we have
w < v if and only if uw < vz.

One could be tempted to state that u < v if and only if uw < vw for any
word w. However, this is not true in general. For example, 01 < 010 but
01-1+010-1.
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Lyndon Words

Definition 2

Let X be a totally ordered alphabet. A nonempty word w € ¥* is a
Lyndon word if it is lexicographically smaller than each of its proper
suffixes, i.e., for every factorization w = uwv in two nonempty words, one
has w < v.

In particular, letters are Lyndon words (trivially) and every Lyndon word
is primitive.
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Lyndon Words

Let w be a primitive word. The following are equivalent:

@ For every factorization w = uv in two nonempty words, uv < v;
@ For every factorization w = uv in two nonempty words, uv < vu;
© For every factorization w = uv in two nonempty words, u < v;

@ For every factorization w = uv in two nonempty words, u < vu.

Notice that the conditions:

@ For every factorization w = uv in two nonempty words, u < uv;
and

@ For every factorization w = uv in two nonempty words, v < vu;

are true for any word, not just for Lyndon words.
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Lyndon Words

Remark 4
The statement of the previous theorem cannot be written as:

Let w be a primitive word, and let w = wv be a factorization of w in two
nonempty words. The following are equivalent:

Q uv <v;
Q wv < wvu;
Q ..

Indeed, this is not true in general. Take for example w = 01001, and the
factorization w = uwv with u = 010 and v = 01; then uv = 01001 /s
smaller than vu = 01010, yet it is not smaller than v = 01.
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Lyndon Words

Let w be a primitive word. The following are equivalent:
@ For every factorization w = uv in two nonempty words, uv < v;

@ For every factorization w = uv in two nonempty words,
(uv)? < (vu)¥;

@ For every factorization w = uv in two nonempty words, (uv)* < v*;
@ For every factorization w = uv in two nonempty words, (vu)¥ < v*;
@ For every factorization w = uv in two nonempty words, u® < v*;

Q For every factorization w = uv in two nonempty words, u* < (vu)¥;
@ For every factorization w = uv in two nonempty words, v¥ < (vu)*;
@ For every factorization w = uv in two nonempty words, u* < (uv)*

It is not true, in general, that u < v implies u* < v“. For example,
01 < 010, but (010)* < (01)v.
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Lyndon Words

Every Lyndon word is not only primitive but also unbordered. Conversely,
every nonempty primitive word has a conjugate that is a Lyndon word.
As a byproduct, every primitive word has a conjugate that is unbordered
(as we already saw).

But one can prove that reversing the order on 3, the Lyndon conjugate
with respect to the reverse order cannot coincide with the Lyndon
conjugate of the previously fixed order, provided that the word is not of
length 1. So, every primitive word of length > 1 has at least two
unbordered conjugates.

For example, over ¥ = {a, b} with a < b, take the primitive word abaabb.
Its conjugate aabbab is Lyndon. For the order b < a, the Lyndon
conjugate is bbabaa.
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Lyndon Words

Example 7
The first few Lyndon words over ¥ = {a, b}, with a < b, are:

a, b,

ab,

aab, abb,

aaab, aabb, abbb,

aaaab, aaabb, aabab, aabbb, ababb, abbbb.
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Lyndon Words

Proposition 8

For every words u,v, with v nonempty, and everyn > 1, u™v is a Lyndon
word if and only if wv is a Lyndon word.

Proposition 9

If uw and v are Lyndon words, and u < v, then uv is a Lyndon word.
Conversely, for every Lyndon word w of length at least 2 there exist
Lyndon words u, v, with u < v, such that w = uv.

For example, aabb can be written as a - abb. Note that aabb can also be
written as aab - b, so the factorization in the previous proposition is not,
in general, unique.
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Generating Lyndon Words

The set of Lyndon words of length < n can be constructed recursively by
the following algorithm, which makes use of Proposition 8: Start with
X1 = ¥; assuming X; is already constructed, take the least word z; in
X; and define

X1 = X\{z:}U{w : |w| <n and w = x¥x; for some k > 1 and j # i}.
For example, over ¥ = {a, b}, with a < b, for n = 4 one has:

X1 = {a, b}

Xy = {aaab, aab, ab, b}
X5 = {aab,ab, b}

X4 = {aabb, ab, b}

X5 = {ab, b}
X6 = {abb, b}
X7 = {abbb, b}
Xg = {b}

Then we stop since no new word is created after this iteration. The set of
Lyndon words of length < n is given by the union of the sets X;.
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Counting Lyndon Words

The number of Lyndon words of length n is equal to the number of
conjugacy classes of primitive words of length n, and we saw that this
number is given by Witt's formula

1
- n/d
2 S

where p is the Mobius function.

If |X] = 2, then number of Lyndon words of length n is asymptotically

n

% (1 + 0(2*”/2)) .

The simple fact that there are exponentially many Lyndon binary words
of length n follows immediately from the observation that for any word w
of length n, the word a™wb is a Lyndon word of length 2n + 1.
Therefore, there are at least 2™ binary Lyndon words of length 2n + 1.
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Lyndon Factors of a Lyndon Word

The minimum number of distinct Lyndon factors in a word of length n is
1 (consider for instance the word a™). But what is the minimum number
of distinct Lyndon factors in a Lyndon word?

Saari in 2014 proved that if w is a Lyndon word with |w| > F,, for some
n > 3, where F;, is the nth Fibonacci number, then w contains at least n
distinct Lyndon factors. Therefore, every Lyndon word of length n
contains at least 1+ [log,, n] distinct Lyndon factors.

This bound is tight, as it is realized by Lyndon factors of the Fibonacci
word, which have length F;, and contain n distinct Lyndon factors.

For example, 00100101 is a Lyndon factor of the Fibonacci word; it has
length 8 = F and contains 6 distinct Lyndon factors, namely
0,1,01,001,00101,00100101.

Conversely, all words of the form a™b™ (which are Lyndon) have the
maximum number of Lyndon factors among all binary words of length 2n.
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Lyndon Sesquipowers

Powers of Lyndon words (e.g., abab or bbb) are precisely those words w
such that w is smaller than or equal to every its proper or conjugate.
They are sometimes called necklaces (meaning that they can be chosen
as representatives of a conjugacy class when the order is fixed), while
Lyndon words are also called aperiodic necklaces.

Let us now consider periodic extensions (i.e., fractional powers) of
Lyndon words, e.g., aab - aab - a. They are prefixes of powers of Lyndon
words and are called Lyndon sesquipowers (or also preprime words, in
those contexts in which Lyndon words are called prime words).

Let b be the largest letter of the alphabet. Then ™, for n > 1, cannot be
the prefix of a Lyndon word. But any other periodic extension of a
Lyndon word is indeed a prefix of a Lyndon word. Let us call Lyndon
prefixes the words that are prefixes of Lyndon words. So,

Lyndon prefixes = Lyndon sesquipowers \ {b" | n > 1}.
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Lyndon Sesquipowers

As a consequence, in order to construct the set of Lyndon sesquipowers
of length n, or the set of Lyndon prefixes of length n (the latter is
obtained from the former by removing the word ™), it is sufficient to
take the set of Lyndon words of length < n and extend each of them
them periodically up to a word of length n.

For example, taking the set of Lyndon words of length < 4, we have that
the set of Lyndon sesquipowers of length 4 over ¥ = {a, b}, a < b, is

Y = {aaaa, aaab, aaba, abab, aabb, abba, abbb, bbbb}

and the set of Lyndon prefixes of length 4 is Y\ {bbbb}.

Remark 10

Notice that in the previous set, the Lyndon words are precisely the
unbordered elements. Indeed, a prefix of a Lyndon word is a Lyndon word
if and only if it is unbordered.
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Lyndon Sesquipowers

Another corollary is the following.

Proposition 11

Let wa, w € ¥*, a € 3, be a prefix of a Lyndon word and b a letter
greater than a. Then wb is a Lyndon word.
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Standard Factorization

The factorization of Proposition 9 is not, in general, unique. So we define
a standard factorization as follows.

Definition 12

The (right) standard factorization of a Lyndon word w of length > 1 is
w = uw, where v is the lexicographically least proper suffix of w (or,
equivalently, the longest proper suffix of w that is a Lyndon word).

For example, the standard factorization of aabb is a - abb.
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Standard Factorization

Let us show that the longest proper suffix of w that is a Lyndon word,
VLyn, coincides with the lexicographically least proper suffix of w, vmin.

Since both are suffixes of w, one is a suffix of another. But v,,;, cannot
be a proper suffix of v, otherwise v, would have a proper suffix
lexicographically smaller than itself, against the definition of Lyndon
word. Hence vpyy is a suffix of vyin. But vy, is a Lyndon word — since
it is smaller than all its suffixes — and vr,, the longest Lyndon suffix of
w, cannot be shorter than vy, whence vry, and vy coincide.

Prove that the words u and v in the standard factorization are both

Lyndon words.
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Standard Factorization

There is also a left standard factorization of a Lyndon word w
(a-k.a. Viennot factorization).

It is the factorization w = uwv, where w is the longest proper prefix of w
that is a Lyndon word (but not the lexicographically least proper prefix of
w, which is always a single letter).

The left and right standard factorizations do not coincide, in general. For
example, the left standard factorization of aabb is aab - b.
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The standard factorization induces a binary tree structure on a Lyndon
word w, in which the root is w and the children of a factor w’ of length
greater than 1 are the words in the standard factorization of w’. The
leaves of the tree are single letters.

Figure: The Lyndon tree of the Lyndon word w = aaababaabbabb.
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Note that any word w can be made Lyndon by prepending to it a sentinel
symbol # that is smaller than every other letter of the alphabet.

|#abbabaababbabaa|

|1 bl |1 b||1 |1 bl | |

bhdbbobndblod

Figure: The Lyndon tree of the Lyndon word w = #abbabaababbabaab.
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Given a sequence S, one can define the Cartesian tree of S as the
ordered binary tree whose nodes are the elements of S, the root is the
node labeled by the least element, and an inorder traversal of the tree
produces S.

lo[3|7]1]8]12]10]20]15]18]5 |
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Therefore, the left subtree of a node 7 contains all the elements of S that
appear in S to the left of 4, and the right subtree of i contains all the
elements of S that appear in S to the right of i.

9[3]7]1]8][12]10]20]15]18]5 |
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As a consequence, the labels of the nodes in the subtree of i are all
greater than 1.

9[3]7]1]8][12]10]20]15]18]5 |




Another property of the Cartesian tree is the following. Given i and j,
the minimum value in the subsequence of S between i and j is the value
of the node that is the lowest common ancestor between nodes i and j.

9[3]7]1]8][12]10]20]15]18]5 |
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Any sequence S can be associated with its corresponding Cartesian tree
CT(S) according to the following rules:

o If S is empty, then CT(S) is an empty tree.

e If S is not empty and S[i] is the minimum value in S, then CT(S) is
the tree with S[i] as the root, CT(S[1,...,i—1]) as the left subtree,
and CT(S[i + 1,...,n]) as the right subtree. If there are two or
more minimum values, we choose the leftmost one as the root.
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Theorem 14 (Hohlweg, Reutenauer, 2003)

Let w be a Lyndon word. Let 1w be the permutation associated with the
ranking of the suffixes of w (a.k.a. the Inverse Suffix Array of w). Then,
the Lyndon tree of w, after removing the leaves, coincides with the
Cartesian tree of .

For example, let w = aaababaabbabb. lts suffix ranking permutation is
ISA(w) =17 =1,2,5,10,4,9,3,7,13,11,6,12, 8].

/ -9

R AN
: Pa /@\m

a b b
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Therefore, starting from the left and separating recursively the array
IS A(w) taking the smallest value in the range, we get the Lyndon tree
of w, corresponding to the parentheses representation

(a)(aababaabbabb)
(

(a)((aabab)(aabbabb))
aabb)(abb)))

(

((a)(abb))((ad)(b))))

a)((ab)(b)))((()(6))(b))))
)

(
(
(
) (a)

a)(6)))(((a)(((a)(6))(0)))(((a)b)(b))))

)
ab))
b)))
(
(

For binary words, it is possible to retrieve w from its IS A by writing for
each position i the letter a if the value at i is smaller than the value at
i+ 1 or b otherwise (and putting a b in the last position).




Lyndon Array

Given a word w, the Lyndon array A(w) is the array such that A[7] is the
length of the longest Lyndon factor of w that starts at position 1.

For example, if w = abaababaab, then A(w) =[2,1,5,2,1,2,1,3,2,1].

Let us define the Next Smaller Value array of a permutation 7 of [1...n]
as the array NSV whose i-th entry is the distance between ¢ and the
smallest index greater than i such that «[j] < 7[¢], if such a j exists, or
NSV[i] =n+ 1 —i (the distance between ¢ and n + 1) otherwise.

Theorem 16

The Lyndon array of w coincides with the Next Smaller Value array of
the permutation associated with the ranking of the suffixes of w (the
ISA of w).

For example, let 7 = IS A(abaababaad) = [5,9,2,6,10,4,8,1,3,7].
Then
NSV[r] =[2,1,5,2,1,2,1,3,2,1].
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Lyndon Factorization

Any word factorizes uniquely in non-increasing Lyndon words. This
factorization is called the Lyndon factorization of w.

For example, let w = abaaaabaaaaabaaaabaaaaaab. The Lyndon
factorization of w is

ab - aaaab - aaaaabaaaab - aaaaaab.

The Lyndon factorization of a word w can be computed by taking the
longest prefix that is a Lyndon word and recurse on the word obtained by
removing this prefix.

Equivalently, it can be computed by taking the lexicographically smallest
nonempty suffix and recurse on the word obtained by removing this suffix.
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Lyndon Factorization

As a consequence of the theorem of Hohlweg and Reutenauer, the
Lyndon factorization of w can be computed from its ISA, starting from
the first position and by searching iteratively for the next position in
which the value is smaller.

For example, for w = abaababaabd, the ISA is [5,9,2,6,10,4,8,1,3,7].
The Lyndon factorization of w is

ab - aabab - aab.
The ISA of w = abaaaabaaaaabaaaabaaaaaab is
[20,25,6,10,14,18,23,3,7,11,15,19,24,5,9,13,17,22,1,2,4, 8,12, 16, 21]
and the Lyndon factorization is

ab - aaaab - aaaaabaaaab - aaaaaab.
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Lyndon Factorization

The Lyndon factorization can be defined for infinite words as well. It is
defined by taking the longest (possibly infinite) prefix that is Lyndon, and
recurse on the suffix that remains.

For example, let w; = 011, we = 01 and for every n > 1, wy,4+1 the word
obtained by rotating by one position the word 7(w,,) (that is, removing
the last letter and putting it in front of the word), where 7 is the
Thue—Morse morphism 0 — 01,1 — 10.

wy = 011
wo = 01
w3 = 0011

wy = 00101101
ws = 0010110011010011
Then, the Lyndon factorization of the Thue—Morse word ¢ is

t= H wy = 011-01-0011 - 00101101 - 0010110011010011 - - -
n>1
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de Bruijn Words

A de Bruijn word of order n on an alphabet X of size k is a circular word
such that every word of length n on k letters appears exactly once as a
factor.

For example, aaababbb is a de Bruijn word of order 3.

If one wants a linear word with the same property, it is sufficient to
concatenate a de Bruijn word with its prefix of length n — 1.
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de Bruijn Words

One way to generate a de Bruijn word is given by the following
remarkable theorem.

Theorem 18 (Fredricksen, Maiorana, 1978)

The lexicographically least de Bruijn word of order n is obtained by
concatenating in increasing lexicographic order the Lyndon words of
length dividing n.

For example, if n = 4 and ¥ = {a, b}, then
aaaabaabbababbbb = a - aaab - aabb - ab - abbb - b

is the least binary de Bruijn word of order 4.
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de Bruijn Words

There is an interesting extension of the theorem of Fredericksen and
Maiorana. A generalized de Bruijn word of order n on k letters is a
circular word such that every primitive word of length n on k letters
appears exactly once as a factor.

Theorem 19 (Au, 2015)

The lexicographically least generalized de Bruijn word of order n is
obtained by concatenating in increasing lexicographic order the Lyndon
words of length n.

So, for example, if n = 4 and ¥ = {a, b}, then
aaabaabbabbb = aaab - aabb - abbb

is the least generalized de Bruijn word of order 4 over X. The primitive
words of length 4 over ¥ are: aaab, aaba, aabb, abaa, abba, abbb, baaa,
baab, babb, bbaa, bbab and bbba.
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de Bruijn Words

The de Bruijn graph of order n > 1 over an alphabet X of cardinality k is
the directed graph whose nodes are the words over % of length n and
there is an edge from u to v if removing the first letter of u produces a
prefix of v (the label of the edge is the last letter of v).

The de Bruijn graph of order 7 has k™ nodes and k™t! edges, it is
strongly connected, and every node has indegree and outdegree k.
Therefore, it is an Eulerian graph. It is also Hamiltonian.

Theorem 20

The set of de Bruijn words of order n + 1 is equal to the set of labels of
Eulerian cycles in the de Bruijn graph of order n. It is also equal to the
set of labels of Hamiltonian cycles in the de Bruijn graph of order n + 1.

Using the previous theorem, it is possible to prove that there are
kn—l
(k)

o distinct de Bruijn words of order n on k letters.
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de Bruijn Words

Figure: The de Bruijn graph of order 3 over ¥ = {a, b}. One can verify that
the de Brujn word of order 3 aaababbb is indeed the label of a Hamiltonian
cycle (starting from node bbb), and that the de Brujn word of order 4
aaaabaabbababbbb is indeed the label of an Eulerian cycle (always starting from
node bbb).
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Finite Sturmian Words

Definition 21

A finite or infinite word w over X, is C-balanced for an integer C' > 1 if
and only if for every factors of w of the same length w and v, one has
[lulo — |v]o| < C, that is, the number of Os (or, equivalently, 1s) in two
factors of the same length differ at most by C.

For example, the Thue—Morse word is 2-balanced but not 1-balanced; the
Fibonacci word is 1-balanced.

We now take a closer look at finite 1-balanced words over Yo, i.e., finite
factors of Sturmian words.
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Finite Sturmian Words

Binary 1-balanced finite words are called finite Sturmian words.
We let St denote the set of finite Sturmian words.

de Luca and De Luca gave some characterizations of finite Sturmian
words. For a nonempty word w, let p,, denote its fractional root,

Tw = |pw]| its minimum positive period, and R,, the least integer & such
that w has no right special factor of length £.

Let w be a nonempty word. The following conditions are equivalent:

@ w is a finite Sturmian word;
@ p,, is a conjugate of a standard Sturmian word;

o 7Tw:1+Rpﬁ,-

Gabriele Fici Combinatorics on Words



Finite Sturmian Words

The following are characterizations of the words w such that w? is
Sturmian (such words are sometimes called circularly balanced).

Proposition 23

The following conditions are equivalent:

Q w? is Sturmian;

n

w™ is Sturmian for every n > 0;

o

@ every conjugate of w? is Sturmian;
@ every conjugate of w is Sturmian;
o

w is Sturmian and it is either non-primitive or a conjugate of a
Lyndon Sturmian word.
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Finite Sturmian Words

On the other hand, we have a characterization of binary words that are
not Sturmian.

Proposition 24

Let w € ¥5. Then w is not Sturmian if and only if there exists a
palindrome v such that Ov0 and 1vl are both factors of w.

The pair (0v0, 1vl) of the previous proposition is called an unbalanced
pair.

Proposition 25 (Dulucq, Gouyou-Beauchamps, 1987)

The language of binary words that are not Sturmian (i.e., that contain an
unbalanced pair) is context-free.
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Sturmian Morphisms

A Sturmian morphism is a morphism such that all images of finite
Sturmian words are Sturmian.

Clearly, the identity morphism ¢d and the morphism E that maps 0 to 1
and 1 to 0 are Sturmian morphisms. Moreover, a composition of
Sturmian morphisms is a Sturmian morphism, so Sturmian morphisms
constitute a monoid, called the Sturm monoid (or Sturmian monoid).

This monoid is generated by F, ¢ and @, where ¢ : 0+— 01, 1+— 0 and
@ : 010, 1+ 0 are, respectively, the Fibonacci morphism and the
reverse Fibonacci morphism.
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Sturmian Morphisms

Recall that the incidence matrix of the endomorphism of ¥,

0 u, Lsvis M ('“'0 |”|°>.
luli vl

Theorem 26

A matrix M € N2%2 js the incidence matrix of a Sturmian morphism if
and only if det(M) = +1, i.e., if and only if it is invertible.

So, the subset of matrices of GL2(Z) with nonnegative entries is a
representation of the Sturm monoid.
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Sturmian Morphisms

Sturmian morphisms have also the following local property:

Theorem 27 (Berstel, Séébold, 1994)

A morphism p is Sturmian if and only if it is acyclic (i.e., u(01) # p(10))
and 1£(10010010100101) is Sturmian.

Sturmian morphisms can also be used to give another characterization of
circularly balanced words.

Proposition 28

A primitive binary word w is circularly balanced if and only if w = p(0)
for some Sturmian morphism .
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Central Words

Definition 29

A word having coprime periods p and ¢ and length p+ ¢ — 2 is called a
central word.

Note that a word having coprime periods p and ¢ and length greater than
p+ g — 2 must be a power of a single letter by the theorem of Fine and
Wilf.

Central words are in fact Sturmian words.
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Central Words

Central words have several characterizations.

Proposition 30

Let v be a word in 5. The following are equivalent:
@ v is a central word;
@ v is a bispecial factor of some Sturmian word;
© the words Ovl and 1v0 are conjugate;
@ v is a palindrome and v01 is the product of two palindromes;
@ 0vl and 1v0 are balanced;
Q v is a palindrome and v0 and vl are balanced;

@ v is a power of a single letter or there exist P and ) such that
v = PxyQ = QuzP, where {x,y} = Xo. Moreover, in this latter
case, P and Q) are central words.
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Central Words

As a consequence of the previous proposition, we have the following

If v is a central word, then so is v™ for every n > 1.

To construct a central word with periods p and ¢, take p’ and ¢/, the
multiplicative inverses of p and ¢ modulo p + ¢, sort the positive
multiples of p’ and ¢’ smaller than p’q’, then write 0 for each multiple of
p’ and 1 for each multiple of ¢'.

Example 32

Let p=4,¢q=7. Thenp' =3 and ¢ =8, since3-4=1 mod 11 and
7-8=1 mod 11. The central word having periods 4 and 7 (and length
447 —2)is, up to renaming letters, the word 001000100.

3 6 8 9 12 15 16 18 21
6o 0 1.0 0 0 1 0 O
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Standard Words

A standard word is a Sturmian word of the form vzy, with v a central
word and zy € {01, 10}.

Standard words are precisely the words that appear in some standard
sequence (of a characteristic Sturmian word).

For example, Fibonacci finite words are standard words.
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Standard Words

Another way to define standard words, in a recursive fashion, is by
defining the standard pairs. The pair (0,1) is a standard pair; if (u,v) is
a standard pair, then so are the pairs (u, uv) and (vu,v). Standard words
are then those that appear in a standard pair.

(0,01) (10,1)
(0,001) (010,01) (10,101) (110,1)
e PN e
(0,0001) (0010, 001)(010,01001)(01010,01) (10, 10101)

N

(01001010, 01001)

Figure: The tree of standard pairs.
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Special Sturmian Words

If one considers extensibility within the set St of Sturmian words, one can
define left special Sturmian words (resp., right special Sturmian words) as
those words w over the alphabet 35 = {0, 1} such that Ow and 1w
(resp., w0 and w1) are both Sturmian words.

For example, the word 001 is left special since 0001 and 1001 are both
Sturmian words, but is not right special since 0011 is not a Sturmian
word.

The Sturmian words that are both left and right special are called
bispecial Sturmian words. They are of two kinds:

@ strictly bispecial Sturmian words (SBS), that are the words w such
that Ow0, Owl, 1w0 and 1wl are all Sturmian words (e.g. 00), or

@ non-strictly bispecial Sturmian words (NBS) otherwise (e.g. 01).
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Special Sturmian Words

Theorem 33 (Berstel, de Luca, 1997)

A word u is a strictly bispecial Sturmian word if and only if Qul is a
balanced Lyndon word.

This correspondence in fact holds more generally between bispecial
Sturmian words and (powers of) balanced Lyndon words. More precisely,
one has:

Theorem 34

A word u is a bispecial Sturmian word if and only if there exist letters
x,y in {0,1} such that zuy is a power of a balanced Lyndon word or the
reversal of a power of a balanced Lyndon word.

For example, © = 01010010 is bispecial but not strictly bispecial, since
1u0 is not Sturmian; we have Oul = (00101)2.
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As a corollary, we have that a bispecial Sturmian word is strictly bispecial
if and only if it is a palindrome (hence a central word).

Since each central word of length n is associated with a pair (p, q) of
coprime periods such that p + ¢ = n + 2, there are p(n + 2) strictly
bispecial Sturmian words of length n, where ¢ is the Euler totient
function. That is,

SBS(n) = ¢(n + 2).
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Let w be a right special Sturmian word of length n > 1. If w is strictly
bispecial, then Ow and 1w are right special Sturmian words of length

n + 1, otherwise only one between Ow and 1w is a right special Sturmian
word of length n + 1.

Therefore, the number RS(n) of right special Sturmian words of length n
verifies RS(n + 1) = SBS5(n) + RS(n) = RS(n) + ¢(n + 2), hence

n+1
RS(n+1) = +Z<pz+1

Since RS(1) = 2 = ¢(1) + ¢(2), we obtain

n+1

n) = (i)
i=1
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Special Sturmian Words

Let w be a Sturmian word of length n > 1. If w is right special, then w0
and w1 are Sturmian words of length n + 1, otherwise only one between
w0 and w1 is a Sturmian word of length n + 1.

Therefore, we have St(n + 1) = RS(n) + St(n), and hence, since
St(1) =2,

n

Stn) =2+ Y () =14+> > @) =1+ (n+1—1i)p(i).

1=2 j=1 i=1 j=1 i=1
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Counting Sturmian Words

So we proved the following

Theorem 35

The number of balanced binary words (i.e., finite Sturmian words) of
length n is

n

St(n) =1+ (n+1—i)e(i)

i=1
where ¢ is the Euler’s totient function, that is the function that counts
the number of integers between 1 and n that are coprime with n.

Essentially, St(n) is the sequence whose second difference is ¢(n + 2),
where ¢ is the Euler totient.
n 1 2 3 4 5 6 7 8 9 10 11 12
St(n) 2 4 8 14 24 36 54 76 104 136 178 224
RS(n) 2 4 6 10 12 18 22 28 32 42 46 58
pn+2) 2 2 4 2 6 4 6 4 10 4 12 6
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Christoffel Words

Infinite Sturmian words can be viewed as the digital approximations of
Euclidean straight lines in the plane.

Given a point (p, q) in the grid Z x Z, with p,q > 0, there exists a unique
path that approximates from below (resp., from above) the Euclidean
segment joining the origin (0,0) to the point (p,q). If one encodes
horizontal and vertical unitary segments with the letters 0 and 1
respectively, one obtains the lower (resp. upper) Christoffel word, denoted
by wp,q (resp., wy, ,), uniquely associated with the pair (p, q).

Figure: The lower Christoffel word ws s = 0010010100101 (left) and the upper
Christoffel word wg 5 = 1010010100100 (right).
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Christoffel Words

By elementary geometrical considerations, one has that for any p,q > 0,
wp,q = Oul for some word u, and wy, , = 140, where u is the reversal of
u. If (and only if) p and g are coprime, the words wy, , and wj, , are
primitive.

If p and ¢ are not coprime, the words wy, , and wy, , are powers of
primitive Christoffel words.

For every pair of coprime integers (p, q) the upper Christoffel word w;),q is
the reversal of the lower Christoffel word wy, 4.

In a geometrical sense, Christoffel words are the finite approximations of
mechanical words.
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Actually, Christoffel words can be defined in a purely arithmetic way:

Definition 37

Let n > 0 and p,q > 0 be coprime integers such that p+ ¢ =n. The
lower Christoffel word wp ; = wiws - - - wy, is the word defined by

w; = ig/(p+¢q)] — |(i = 1)g/(p+q)]

W — { 0 ifig mod (n) > (i—1)g mod (n)
Z 1 ifig mod (n) < (i—1)g mod (n)

We call p/q the slope of wy, 4.2

?In the special case ¢ = 0 we set the slope to be cc.
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Christoffel Words

Example 38
Let p =8 and ¢ = 5. We have

{i5 mod (13) |i=0,1,...,13} = {0,5,10,2,7,12,4,9,1,6,11, 3,8, 0}.

Hence, the lower Christoffel word of slope 5/8 is wg 5 = 0010010100101.

Remark 39

Notice that at each step, either we add q, or we subtract p, and we have
all integers between 1 and n — 1 exactly once.

Gabriele Fici Combinatorics on Words



Christoffel Words

Analogously, one can define the upper Christoffel word

W), = wheh- -, by

/
P,
W — 0 ifip mod (n) < (i—1)p mod (n)
"1 1 ifip mod (n)>(i—1)p mod (n)

7

Of course, the upper Christoffel word wj, , is the best grid approximation
from above of the Euclidean segment joining (0,0) to (p, q).

Example 40
Let p =8 and ¢ = 5. We have

{i8 mod (13) |i=0,1,...,13} = {0,8,3,11,6,1,9,4,12,7,2,10,5,0}.

(Notice that the numbers are the complements to n of the numbers in
the sequence of the lower Christoffel word.) Hence, the upper Christoffel
word of slope 5/8 is wg 5 = 1010010100100.

’
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Christoffel Words

From the definition, it follows that every point in the grid that belongs to
the path encoded by a primitive Christoffel word of slope ¢/p has
Euclidean distance smaller than v/2 from the Euclidean segment joining

(0,0) to (p,q).

Consider the sequence {ig mod (p+¢q)}, for i =0,1,...,p+ ¢, defining
the lower Christoffel word w), ;. Each subsequent number in the sequence
is obtained by either adding ¢ or subtracting p.

If we divide each term in the sequence by p, we get the sequence of
vertical distances between the endpoints of paths encoded by prefixes of
wp,q and the Euclidean segment joining (0,0) to (p, ¢); if instead we
divide by /p? + ¢2 (the length of the Euclidean segment) we get the
sequence of Euclidean distances.
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Christoffel Words

For example, for wy 4, the sequence {4i mod 11} is
{0,4,8,1,5,9,2,6,10,3,7,0}

Taking for example i = 5, we get that the point (4, 1), which is the
endpoint of the path corresponding to the prefix 00100 of wy 4, has
vertical distance 9/7 = 1.286 and Euclidean distance 9/v/65 ~ 1.116
from the Euclidean segment joining (0,0) and (7,4).

(7,4)

(0,0)
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Christoffel Words

In particular, the point S on the path representing w,, 4 that is closest to
the Euclidean segment (without lying on the segment itself) is at
distance 1/4/p? + ¢2, whereas the point S’ that is farthest from the
segment is always at distance (p +¢q —1)/v/p? + ¢>.

(0,0) (0,0)

{07 47 8’ 17 57 97 27 6’ 10’ 37 77 O}
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Christoffel Words

Christoffel words have several characterizations.

Proposition 41

Let avb be a word in ¥o, with {a,b} = Xa. The following are equivalent:

Q avb is a (lower or upper) primitive Christoffel word;
@ v is a central word;

© avb is balanced and unbordered;

@ 0vl s balanced and Lyndon (for the order 0 < 1);

@ avb is a conjugate of bua.

So, Christoffel words are precisely the unbordered Sturmian words, and
lower Christoffel words are precisely the Lyndon Sturmian words.
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So, central words are the “central” factors of primitive Christoffel words
of length > 2.

Moreover, we have:

Proposition 42

Let wy, 4 = 0v1 be a primitive lower Christoffel word. The central word v
has periods p' and q', the multiplicative inverses of p and ¢ modulo p + q,
respectively (and length p' +q' —2=p+q— 2).
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Christoffel Words

A geometric interpretation of the central word v in wy ; = Ovl is the
following: it encodes the intersections of the Euclidean segment joining
(0,0) to (p,q) (0 for a vertical intersection and 1 for a horizontal
intersection).

That is, the word v is the cutting sequence of the Euclidean segment
joining (0,0) to (p,q).

(7,4)

(0,0)
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Christoffel Words

From the geometrical point of view, the lower and the upper Christoffel
words with a given Parikh vector encode the frontiers of the region
containing all Sturmian words with that Parikh vector (but there are also
other words).

Theorem 43

Let p,q > 0 and n = p + q. Every finite Sturmian word with Parikh
vector (p,q) encodes a path that is contained in the region delimited by
the lower and the upper Christoffel words, i.e., stays at distance smaller
than \/2 from the Euclidean segment joining (0,0) to (p,q).
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Christoffel Words

Example 44

Out of the ("}*) = 330 binary words with Parikh vector (7,4), only 112
of them encode paths that lie no more than v/2 away from the Euclidean
segment joining (0,0) to (7,4), i.e., are contained in the region delimited
by the lower and the upper Christoffel words of Parikh vector (7,4).

In particular, all 19 balanced words of slope 4/7 are among such
approximations of the segment.
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Proposition 45 (Borel, Laubie, 1993)

For every pair (p,q) of coprime positive integers, the lower Christoffel
word w,, 4 is the greatest (in the lexicographic order) Lyndon word having
Parikh vector (p, q).

For example, the Lyndon words of Parikh vector (7,4) are, in
lexicographic order: 00000001111, 00000010111, 00000011011,
00000011101, 00000100111, 00000101011, 00000101101, 00000110011,
00000110101, 00000111001, 00001000111, 00001001011, 00001001101,
00001010011, 00001010101, 00001011001, 00001100011, 00001100101,
00001101001, 00001110001, 00010001011, 00010001101, 00010010011,
00010010101, 00010011001, 00010100011, 00010100101, 00010101001,
00011001001, 00100100101 = w7 4.
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Christoffel Words

The following proposition, which follows from Theorem 43, is in some
sense dual to Proposition 45.

Proposition 46

For every pair (p,q), the lower Christoffel word wy, , is the smallest (in
the lexicographic order) finite Sturmian word having Parikh vector (p, q).

For example, the 19 Sturmian words with Parikh vector (7,4), in
lexicographic order, are:

wr 4 = 00100100101, 00100101001, 00101001001, 00101001010,
00101010010, 00101010100, 01001001001, 01001001010, 01001010010,
01001010100, 01010010010, 01010010100, 10001001001, 10010001001,
10010010001, 10010010010, 10010010100, 10010100100, 10100100100
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Recall that a word is conjugate to its reversal if and only if it is the
concatenation of two palindromes and that a primitive word cannot have
two factorizations as concatenations of two nonempty palindromes.

So we have:

Proposition 47

Every primitive Christoffel word has a unique factorization as a
concatenation of two palindromes.

This factorization is called the palindromic factorization.

For example, the palindromic factorization w7 4 = 00100100101 is
00100100 - 101.
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But since primitive lower Christoffel words are Lyndon words, we also
have that every primitive lower Christoffel word longer than 1 has a
unique factorization as a concatenation of two Lyndon words (actually,
two Christoffel words).

This factorization is called the standard factorization.

For example, the standard factorization w7 4 = 00100100101 is
001 - 00100101.
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Let wy, 4 = 0v1 be a lower Christoffel word. If the central word v is not a
power of a single letter, then there exist central words P and () such that
v = P01Q = Q10P so that wg = 0vl = 0P0-1Q1 = 0Q1-0P1.

Hence, we have the factorizations:
@ 0vl =0P0-1Q1 (palindromic factorization);
@ 0vl =0Q1 - 0P1 (standard factorization).

If instead v = 0™ (the case v = 1" is analogous) we have:
@ Ovl = 0""!.1 (palindromic factorization);
@ 0vl =0-0"1 (standard factorization).
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The lengths of the two factors in both the palindromic and the standard
factorization of the primitive lower Christoffel word w), 4 = Ov1 are
precisely the two coprime periods of the central word v whose sum is

p + q, i.e., the multiplicative inverses of p and ¢ modulo p + ¢.

The two factorizations determine the point S and S’, respectively.

5

(0,0) (0,0)

Figure: The standard factorization 0Q1 - 0P1 = 001 - 00100101 (left) and the
palindromic factorization 0P0 - 1Q1 = 00100100 - 101 (right) of the lower
Christoffel word w7 4. The point S determined by the standard factorization is
the closest to the Euclidean segment, while the point S’ determined by the
palindromic factorization is the farthest.
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