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Some Notions of Symbolic Dynamics

The set Σω of infinite words over the alphabet Σ is an ultrametric1 space
for the distance between two words x and y defined by 2−δ, where δ is
the length of the longest common prefix of x and y.

Given an infinite word x = x0x1 · · · , where xi ∈ Σ, we let
S(x) = x1x2 · · · denote the shift map.

The orbit of x is the infinite set O(x) = {Sn(x) | n ≥ 0}.

The shift orbit closure O(x) of x is the topological closure of the orbit of
x and coincides with the set of infinite words y such that
Fact(y) ⊆ Fact(x).

1Recall that d is ultrametric if instead of the triangular inequality it verifies the
stronger property d(x, y) ≤ max{d(x, z), d(z, y)}.
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Some Notions of Symbolic Dynamics

For example, the complement t = 1001011001101001 · · · of the
Thue–Morse word is in the shift orbit closure of the Thue–Morse word
(since the set of factors of the Thue–Morse word is closed under taking
the complement), but not in its orbit.

Every binary infinite word x is in the shift orbit closure of the
Champernowne word C2 = 0110111001011101111000 · · · , since
Fact(x) ⊂ Fact(C2).

Note that O(x) is finite if and only if x is (eventually) periodic. If instead
x is aperiodic, then O(x) is uncountable.
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Some Notions of Symbolic Dynamics

The pair (O(x), S) is called the (one-sided) subshift generated by x.

A subshift is minimal if it does not contain properly another subshift.

Theorem 1

Let x be an infinite word. The following are equivalent:

1 the subshift (O(x), S) is minimal;

2 x is uniformly recurrent;

3 for any y ∈ O(x), O(y) = O(x);

4 for any y ∈ O(x), Pref(y) ⊂ Fact(x);

5 for any y ∈ O(x), Fact(y) = Fact(x).
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Some Notions of Symbolic Dynamics

The shift orbit closure of an aperiodic word can, in general, contain a
periodic word. For example, the shift orbit closure of the Sierpiński word
s, fixed point of 0 7→ 010, 1 7→ 111, contains the word 1ω, since
Fact(1ω) ⊆ Fact(s).

However, by Theorem 1, if x is uniformly recurrent this cannot happen
(remember that the Sierpiński word is not uniformly recurrent).

Remark 2

A theorem of Furstenberg says that if x is an infinite word, then there
exists a uniformly recurrent word x′ such that Fact(x′) ⊆ Fact(x).
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Recurrence Function

Recall that an infinite word x is uniformly recurrent if and only if for
every finite factor u of x there exits an integer m (that depends on u)
such that u occurs in every factor of x of length m|u|.

So for uniformly recurrent we can define the recurrence function

Rx(n) = inf{m | every factor of length n occurs in every factor of length m}

For example, the first few values of the recurrence function of the
Thue–Morse word t = 0110100110010110 · · · are Rt(0) = 0, Rt(1) = 3
(every factor of length 3 contains both 0 and 1), Rt(2) = 9, Rt(3) = 11,
etc.
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Recurrence Function

A word x is linearly recurrent (with constant m) if and only if its
recurrent function is a linear function (with constant m), that is,
Rx(n) ≤ mn, for every n ≥ 0.

The recurrence quotient of an infinite word x is defined as

ρx = lim sup
n→∞

Rx(n)

n

It can be proved that for every aperiodic word x, ρx ≥ 3.

Conjecture 3 (Rauzy, 1982)

For every aperiodic word x, ρx ≥ ϕ+ 2 ≈ 3.618

The value ϕ+ 2 is exactly the recurrence quotient of the Fibonacci word,
so if the conjecture holds, then it is optimal.
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Recurrence Function

A variation of the recurrence function is the prefix recurrence function

R′x(n) = inf{m | every factor of length n occurs in the prefix of length m}

Of course, for every n, one has R′x(n) ≤ Rx(n).

Now, one can define the prefix recurrence quotient of x as

ρ′x = lim sup
n→∞

R′x(n)

n
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Recurrence Function

With respect to ρ′x, we can state the following conjecture, analogous
Conjecture 3.

Conjecture 4

For every aperiodic word x, ρ′x ≥ ϕ+ 1 = ϕ2 ≈ 2.618

The value ϕ+ 1 is exactly the prefix recurrence quotient of the Fibonacci
word.

But actually Cassaigne disproved this conjecture, by proving that for
every aperiodic word x,

ρ′x ≥
29− 2

√
10

9
≈ 2.52

and this value is actually attained by the fixed point of
0 7→ 01001010, 1 7→ 010.
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Recurrence Function

Cassaigne also defined the factor recurrence function

R′′x(n) = inf{|v| | v is a factor and every factor of length n occurs in v}

For the quantity

ρ′′x = lim sup
n→∞

R′′x(n)

n

there is no analogous conjecture; in fact for every aperiodic word x one
has ρ′′x ≥ 2 and the value 2 actually characterizes aperiodic words with
minimal factor complexity (i.e., Sturmian words).
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Return Words

Definition 5

Let x be a recurrent word, and u a nonempty factor of x. We say that a
word w is a return to u if wu is a factor of x and contains exactly two
occurrences of u (one as a prefix and one as a suffix), i.e., if wu is a
complete return to u.

In other words, given a factor u of a recurrent word x, we know that u
must eventually reoccur in x, and we consider the portions of x between
two consecutive occurrences of u in x, including the first occurrence of u.

For example, in the Fibonacci word

f = 01001010010010100101001001010010010100 · · ·

the returns to u = 101 are w = 10100 and w′ = 10100100.

The factor w can be of any positive length. For example, if an+1 is a
factor of x, for a letter a ∈ Σ, then w = a is a return word to u = an.
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Return Words

We let Rx(u) denote the set of returns to u in x. We will omit the
subscript when the word x is clear from the context.

Notice that if x is uniformly recurrent, then for every factor u of x,
Rx(u) is finite, since u occurs in x with bounded gaps.

Proposition 6

Let w,w′ ∈ R(u) be distinct. Then w and w′ do not overlap.

Proof.

If w and w′ overlap, one of the two contains an internal occurrence of u,
against the definition of return word.
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Derived Words

We know that in a uniformly recurrent word, the set of returns to any
factor is finite.

So, for any nonempty prefix u of a uniformly recurrent word x, we can
factor x using returns to u. If we call these returns 0, 1, . . . , k− 1, we get
a new word over the alphabet Σk, called the derived word of x w.r.t. the
prefix u, noted Du(x).

Since x is uniformly recurrent, also Du(x) is.

For example, the prefix u = 011 of the Thue–Morse word t has 4 returns:
Rt(011) = {011010, 011001, 01101001, 0110}.
So, we get

t = 011010 · 011001 · 01101001 · 0110 · 011010 · 011001 · 0110 · 011 · · ·

so that
D011(t) = 0123013 · · ·
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Derived Words

A word x is primitive morphic if x is obtained by applying a coding to a
fixed point of a primitive morphism.

So, primitive morphic words are a subclass of morphic words.

Theorem 7 (Durand, 1998)

Let x be a uniformly recurrent word. Then, x is primitive morphic if and
only if the set {Du(x) | u ∈ Pref(x), u 6= ε} of its derived words is finite.

Exercise 8

What is the cardinality of the set of derived words of the Thue–Morse
word?
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Factor Complexity

In order to study the complexity of a word one can define a quantitative
measure of the degree of variety of patterns that can appear in the word.

The most natural patterns are factors, and the most natural measure is
counting the number of distinct factors of each length.

Definition 9

The factor complexity of a finite or infinite word w over the alphabet Σ is
the function defined by fw(n) = |Fact(w) ∩ Σn|, for every n ≥ 0.

Notice that fw(1) is the number of distinct letters occurring in w.
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Factor Complexity

Example 10 (Brlek)

The factor complexity ft(n) of the Thue–Morse word t is the function
defined as follows: ft(1) = 2, ft(2) = 4 and for n ≥ 3, let
n = 2r + q + 1, r ≥ 0, 0 ≤ q < 2r; then:

ft(n) =

{
6 · 2r−1 + 4q if 0 ≤ q ≤ 2r−1;

2r+2 + 2q if 2r−1 < q < 2r.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ft(n) 2 4 6 10 12 16 20 22 24 28 32 36 40 42 44 46

Table: The first few values of the complexity function of the Thue–Morse word
t = 0110100110010110 · · · .
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Factor Complexity

It is possible to construct infinite words with maximal factor complexity
fw(n) = |Σ|n. For example, over Σk, the infinite word obtained by
concatenating the k-ary representation of n for every n ≥ 0 is called the
Champernowne word Ck and has factor complexity kn.

Any word with maximal factor complexity is recurrent but cannot be
uniformly recurrent (it contains arbitrarily large powers of a single letter,
so no other letter can occur with bounded gaps).

However, if a word does not contain Σ∗ as set of factors, then it cannot
have arbitrary factor complexity:

Theorem 11

Let x be an infinite word over Σ such that Fact(x) 6= Σ∗. Then there
exists a real number α, with 1 < α < |Σ|, such that fx(n) = O(αn).

For example, a binary infinite word cannot have factor complexity 2n/n.
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Factor Complexity

The basic result on the factor complexity is the following theorem of
Hedlund and Morse:

Theorem 12 (Hedlund, Morse, 1938)

An infinite word x is aperiodic if and only if fx(n) ≥ n+ 1 for every
n ≥ 0.

The previous theorem establishes a threshold on the factor complexity
function that allows one to distinguish between periodic and aperiodic
words.
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Factor Complexity

The factor complexity of the Chacon word is 2n− 1 for every n ≥ 2.

The factor complexity of the Rudin–Shapiro word r verifies
fr(n) = 8n− 8 for every n ≥ 7.

The factor complexity of the von Neumann word
v = 0010011001001110010011001 · · · is

fv(n) =

n∑
i=0

min(2i, n− i+ 1)

which is exactly the maximal number of distinct factors of a binary word
of length n, although no explicit bijection is known. Notice that one has
fv(n) ∈ Θ(n2).

A conjecture of Dekking is that the factor complexity of the
Oldenburger–Kolakoski word k verifies fk(n) = Θ(nq), for
q = log 3

log 3
2

≈ 2.7095.

Gabriele Fici Combinatorics on Words



Factor Complexity

Definition 13

A word x such that fx(n) = n+ 1 for every n ≥ 0 is called a Sturmian
word.

Sturmian words are therefore aperiodic words with minimal factor
complexity.

The Fibonacci word f is an example of a Sturmian word.

The Thue–Morse word, instead, is not Sturmian, since it has 4 distinct
factors of length 2.

Note that a Sturmian word is a binary word, since it must verify f(1) = 2.

Although the Fibonacci word is a fixed point of a morphism, not all
Sturmian words are. Note also that every infinite suffix of a Sturmian
word is a Sturmian word, by definition.

Gabriele Fici Combinatorics on Words



Factor Complexity

Definition 14

A word x is quasi-Sturmian if it has factor complexity fx(n) = n+ c for
some c ≥ 1 and for every n ≥ n0.

The word

δ(f) = 010001010001000101000101000100010100010001010001010001 · · ·

where δ is the period-doubling morphism, is a quasi-Sturmian word, since
it has factor complexity n+ 2 for every n ≥ 3.

The word

µ(f) = 001100001100110000110000110011000011001100001100001100 · · ·

image of the Fibonacci word under the doubling letter morphism
µ : 0 7→ 00, 1 7→ 11, has factor complexity n+ 3 for every n ≥ 4.

Cassaigne characterized quasi-Sturmian words as those words that are of
the form wµ(x) where w is a finite word, x is a Sturmian word, and µ is
an acyclic binary morphism (i.e., such that that µ(01) 6= µ(10)).
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Factor Complexity

Definition 15

A word x such that fx(n) = 2n for every n ≥ 0 is called a Rote word.

All Stewart words have factor complexity 2n, i.e., they are Rote words.

An example of a Rote word that is not uniformly recurrent is the fixed
point of 0 7→ 001, 1 7→ 111

00100111100100111111111111100100111100100111 · · ·
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Factor Complexity

With respect to the recurrence functions, Cassaigne proved the following
inequality

Theorem 16

Let x be an infinite word. For every n ≥ 0,

fx(n) + n− 1 ≤ R′′x(n) ≤ R′x(n) ≤ Rx(n).
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Factor Complexity of Linearly Recurrent Words

For linearly recurrent words, the factor complexity is at most linear.

Recall that Rx(n) ≤ mn for every n ≥ 0 if and only if the distance
between two consecutive occurrences of a factor of length n of x is at
most (m− 1)n+ 1.

Theorem 17 (Durand, Host, Skau, 1999)

Let x be an aperiodic linearly recurrent infinite word, i.e., there exists an
integer m > 0 such that Rx(n) ≤ mn for every n ≥ 0. Then:

1 for every n ≥ 0, all factors of x of length n occur in every factor of
length mn of x;

2 x is m-free;

3 for every n ≥ 0, fx(n) ≤ (m− 1)n+ 1;

4 for every nonempty u ∈ Fact(x), if w ∈ R(u), then
|u|
m

< |w| ≤ m|u|;

5 for every nonempty u ∈ Fact(x), |R(u)| ≤ m3;
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Factor Complexity of Linearly Recurrent Words

1 is immediate by definition.

For 2, suppose x contains vm for some nonempty v. Since |vm| = m|v|,
vm must contain all factors of x of length |v|. But vm contains at most
|v| distinct factors of length |v|, and an aperiodic word must contain at
least n+ 1 distinct factors of length n for every n by Theorem 12,
contradiction.

For 3, let v be any factor of length mn of x. By 1, v contains all factors
of length n of x. Since |v| = mn, v contains at most mn− n+ 1 distinct
factors of length n (in general, a word of length ` contains at most
`− t+ 1 factors of length t for every t ≤ `). Therefore, the distinct
factors of x of length n cannot be more than mn−n+ 1 = (m− 1)n+ 1.
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Factor Complexity of Linearly Recurrent Words

Let us now prove 4. Since two consecutive occurrences of u in x are at
distance at most (m− 1)|u|+ 1, every word w ∈ R(u) has a length
|w| ≤ m|u|. For the other inequality, suppose |w| ≤ |u|/m. Since wu has
u as a border, wu has period |wu| − |u| = |w| ≤ |u|/m (i.e., the two
occurrences of u in wu overlap). We deduce that wu has wm as a prefix,
but this contradicts 2.

For 5, let v be any factor of length m2|u| of x. Every word w ∈ R(u) has
a length |w| ≤ m|u| (by 4), hence it must have an occurrence in v by 1.
Always by 4, every word w ∈ R(u) has a length |w| ≥ |u|/m, and since
by Proposition 6 returns to the same word do not overlap, v can contain
at most |R(u)| ≤ |v|/(|u|/m) = m|v|/|u| = m3 returns to u.
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Factor Complexity of Pure Morphic Words

If a word is a fixed point of a primitive morphism, then it is linearly
recurrent, and in this case its factor complexity is sublinear.

In general, though, words that are fixed points of a morphism, not
necessarily primitive, cannot have arbitrary complexity:

Theorem 18 (Pansiot, 1984)

Let x be a fixed point of a morphism. Then one of the following holds
true:

1 fx(n) = Θ(1) (e.g., 0 7→ 01, 1 7→ 01);

2 fx(n) = Θ(n) (e.g., 0 7→ 01, 1 7→ 0, Fibonacci);

3 fx(n) = Θ(n log log n) (e.g., 0 7→ 0101, 1 7→ 11);

4 fx(n) = Θ(n log n) (e.g., 0 7→ 012, 1 7→ 0, 2 7→ 23);

5 fx(n) = Θ(n2) (e.g., 0 7→ 012, 1 7→ 12, 2 7→ 2; or 0 7→ 001, 1 7→ 1,
von Neumann).

Moreover, if the morphism is uniform (the images of the letters all have
the same length) then only Cases 1 and 2 are possible.
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Factor Complexity of Pure Morphic Words

However, if a word is morphic but not pure morphic (that is, it is
obtained from a fixed point of a morphism after applying a coding), then
it can have other factor complexities.

For example, Pansiot proved that there exists a binary morphic word
whose factor complexity is Θ(n

√
n).

Devyatov proved that there exist morphic words with factor complexity
Θ(n1+

1
` ), for every positive integer `.

On the other hand, also words that are not fixed points of a morphism
can have linear factor complexity:

Proposition 19

All the paperfolding words have the same factor complexity f(n);
moreover, f(n) = 4n for every n ≥ 7.
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Factor Complexity of Toeplitz Words

Recall that the regular paperfolding word is a simple Toeplitz word, that
is, it is generated by a single partial word.

Theorem 20 (Cassaigne, Karumäki, 1997)

Let x be an aperiodic simple Toeplitz word generated by a partial word P
of length p containing q occurrences of ?.

Let d = gcd(p, q) and p′ = p/d, q′ = q/d.

Then fx(n) = Θ(nr), where r =
log p′

log p′ − log q′
.

In particular, if q divides p, then the factor complexity is linear. We know
that in this case the Toeplitz word is q-automatic (all automatic words
have linear factor complexity).
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Topological Entropy

Let x be an infinite word over Σk. For every n, any factor of x of length
n can be extended on the right by one letter into a factor of length n+ 1
in at most k ways. Therefore, fx(n) ≤ kfx(n− 1).

More generally:

Proposition 21

Let x be an infinite word. Then, for all integers m and n, one has
fx(m+ n) ≤ fx(m)fx(n).

Proof.

Every factor of length m+ n has a prefix of length m that can be chosen
in fx(m) possible ways and a suffix of length n that can be chosen in
fx(n) possible ways.

In other words, the real-valued function log fx is subadditive.
Theorem 11 is in fact a direct consequence of the previous proposition.
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Topological Entropy

Lemma 22 (Fekete, 1923)

Let (an) be a sequence of real numbers such that am+n ≤ am + an
(subadditive). Then limn→∞

an
n exists and is equal to inf ann .

Since by Proposition 21 the function log fx is subadditive, we therefore
have that

lim
n→∞

log fx(n)

n

always exists and is a constant h such that 0 ≤ h ≤ log k, where k is the
size of the alphabet of x; the constant h is called the topological entropy
of the infinite word x. Moreover,

h = lim inf
log fx(n)

n
.

Notice that h > 0 if and only if fx(n) is exponential. Words with
polynomial factor complexity have null topological entropy.
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Topological Entropy

So, a natural question is whether it is possible to construct words with
arbitrary topological entropy.

Theorem 23 (Grillenberger, 1972)

For every real number h ∈ (0, log k) there exists a uniformly recurrent
word over Σk, k ≥ 2, whose topological entropy is equal to h.

The proof is constructive and the word obtained is actually a Toeplitz
word.
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Special Factors

The factor complexity is strictly related to the special factors.

Definition 24

A factor v of a finite or infinite word w is right (resp., left) special if
there exist two different letters a and b in Σ such that va and vb
(resp., av and bv) are both factors of w.

A factor is called bispecial if it is right and left special.
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Special Factors

Theorem 25

An infinite word is aperiodic if and only if it has at least one right special
factor for each length.

Proof.

Suppose x is aperiodic and take n ∈ N. Since the set of factors of length
n of x is finite, there is one factor w of x of length n that occurs at
positions i and j, with i < j. There exists m such that the letters xi+m
and xj+m are different, otherwise j − i would be a period of x; and
m ≥ n since the same word w of length n occurs at positions i and j.
Let w′ = xixi+1 · · ·xi+m−1. Then w′ is right special, and so is its suffix
of length n. So, there is at least one right special factor of each length.

If x is not aperiodic, then it has the form x = uvω for some u and v.
Now, for sufficiently large n, the number of distinct factors of length n in
x is constant (at most |u|+ |v|). Hence, there are no right special factors
of length n, since a right special factor of length n makes the number of
factors of length n+ 1 strictly greater than those of length n.
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Special Factors

Sturmian words have exactly one right special factor for each length.
Indeed, in general, the number of factors of length n of an infinite binary
infinite word is equal to the number of factors of length n− 1 plus the
number of right special factors of length n− 1 (since a right special factor
can be extended in exactly two ways, while any other factor in one way).

Since the factor complexity of a Sturmian word is n+ 1 for every n, there
must be exactly one right special factor for each length.

And conversely, if a binary word has exactly one right special factor for
each length, then its factor complexity must be n+ 1 for every n, hence
it is a Sturmian word.

The same also holds, of course, if one takes left special factors instead of
right special ones.
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Special Factors

Proof of Morse–Hedlund Theorem.

If x is aperiodic, x has at least one right special factor for each length by
Theorem 25. Hence, fx(n+ 1) > fx(n) for every n, since every right
special factor can be extended by at least two different letters. Since
fx(1) ≥ 2 (if fx(1) = 1, x cannot be aperiodic), we have fx(n) > n for
every n.

If x is not aperiodic, then it has the form x = uvω for some words u and
v. For sufficiently large n, the number of distinct factors of length n in x
is constant (at most |u|+ |v|). Hence, we cannot have fx(n) > n for
every n.
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Special Factors

Extensions of the class of Sturmian word to larger alphabet exist based
on the notion of special factors.

Definition 26

An Arnoux–Rauzy word is a word over Σk, k ≥ 2, having exactly one left
and one right special factor of each length, and these can be extended
with every letter of the alphabet (i.e., they have degree k).

Equivalently, an Arnoux–Rauzy word is a recurrent infinite word having
factor complexity (k − 1)n+ 1 and exactly one left special and one right
special factor of each length n.

An example of an Arnoux–Rauzy word is the Tribonacci word tr (or more
generally, all m-bonacci words).
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Special Factors

A remarkable property that is shared by Sturmian and Arnoux–Rauzy
words is that the set of factors is closed under reversal.

This nice property inspired Droubay, Justin, and Pirillo to introduce the
following generalization of Sturmian words:

Definition 27

An infinite word is an episturmian word if it is closed under reversal and
has at most one left special factor of each length, but not necessarily of
degree k.

Arnoux–Rauzy words are sometimes called strict episturmian words.

Note that, by definition, an episturmian word may be periodic.
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Special Factors

Bispecial factors and their returns can be used to compute the critical
exponent.

Theorem 28

Let x be a recurrent aperiodic word. Let (bn) be a sequence of all
bispecial factors of x ordered by their length. For every n ∈ N, let rn be
a shortest return word to bn in x. Then the critical exponent ce(x) of x
is equal to

ce(x) = 1 + sup
n∈N

{
|bn|
|rn|

}

As a consequence, for aperiodic linearly recurrent words the critical
exponent is always finite.

Gabriele Fici Combinatorics on Words



Palindromic Complexity

Given an infinite word x, one can count the number of factors of x of
length n that are palindromes, for every n. This function, PALx(n), is
called the palindromic complexity of the word x.

Trivially, one has PALx(n) ≤ fx(n), but the following bound, due to J.-P.
Allouche, M. Baake, J. Cassaigne, D. Damanik, is not trivial:

Theorem 29

Let x be an aperiodic word. Then

PALx(n) ≤ 16

n
fx

(
n+

⌊n
4

⌋)
.
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Palindromic Complexity

Damanik and Zare proved that the palindromic complexity of a fixed
point of a primitive morphism is bounded. The same holds for fixed point
of uniform morphisms (not necessarily primitive).

For example, the palindromic complexity of the Fibonacci word f is 2 for
odd n and 1 for even n. (Actually, this is the palindromic complexity of
any Sturmian word).

The palindromic complexity of the Tribonacci word tr is 3 for odd n and
1 for even n.
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Palindromic Complexity

Another consequence is that if the factor complexity is at most linear,
then the palindromic complexity is bounded (but the converse is not true
in general).

Baláži, Masáková, and Pelantová proved that for uniformly recurrent
infinite words such that the set of factors is closed under reversal
(otherwise PALx(n) eventually vanishes), one has for all n ∈ N,

PALx(n) + PALx(n+ 1) ≤ fx(n+ 1)− fx(n) + 2.
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Palindromic Complexity

Infinite words for which PALx(n) + PALx(n+ 1) always reach the upper
bound given in the previous relation are precisely recurrent infinite rich
words.

This result can be viewed as a characterization of recurrent rich infinite
words, since any rich infinite word is recurrent if and only if its set of
factors is closed under reversal.

As a consequence, any infinite word with sublinear factor complexity has
bounded palindromic complexity, since the first difference
fx(n+ 1)− fx(n) is bounded for any such infinite word.

On the other hand, there also exist recurrent infinite rich words with
superlinear factor complexity. An example is the von Neumann word
v = 001001100100111001001100100 · · · , fixed point of the morphism
0 7→ 001, 1 7→ 1, whose factor complexity grows like n2.
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