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Integer Powers

A word w that can be written as w = vk for some primitive word v and

an integer k ≥ 2 is called an integer repetition or integer power (of order

k), and v is called the primitive root of the integer repetition.

A repetition of order 2 is simply called a square, while a repetition of

order 3 is simply called a cube. A repetition of order k is called a k-power.
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Fractional Powers

We can extend this definition to the non-integer case.

Definition 1

Let w be a word and suppose that v is a word-period of w. Then we can

write w = vβ for β = |w|/|v| ≥ 1. We say that w is a fractional

repetition (or a sesquipower), or more specifically a β-power.

If |v| is the smallest positive period of w, the word v is called the

fractional root of the fractional repetition.

For example, the word w = 0010010 is a 7/3-power, and v = 001 is its

fractional root.

The word w = 01001010010 has minimum positive period 5 and can be

written as (01001)11/5.

Remark 2

Every bordered word is a fractional repetition.
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Exponent

Remark 3

A word like 0000 is both a square and a 4th-power, so the order of an

integer repetition is not uniquely determined, unless we assume that the

root is primitive.

For fractional repetitions the situation is similar: the exponent is not

uniquely determined, unless we assume that the length of the root is the

smallest positive period of the fractional repetition. For example,

w = 01001010010 has periods 5 and 8 so it is both a 11/5-power and a

11/8-power.

So, unless otherwise specified, when we refer to the exponent of a

fractional repetition, we refer to the ratio between its length and its

minimum positive period.
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Squares

Squares are the simplest kind of repetition. A natural question is how

many distinct square factors a word can contain.

The following result was conjectured by Fraenkel and Simpson in 1998

and then proved by Brlek and Li in 2022:

Theorem 4

A word of length n contains less than n distinct square factors.
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Squares

About the occurrences of squares in a word, we have the following result,

due to Crochemore and Rytter:

Lemma 5 (Three Squares Lemma)

Suppose u is primitive, and v is not a power of u. If u2 is a prefix of v2,

in turn a proper prefix of w2, then |w| ≥ |u|+ |v|.

The Fibonacci word demonstrates that this result is best possible.

Indeed, the square prefixes of the Fibonacci word are the squares of the

Fibonacci finite words, starting from 010 (square prefixes ending at

positions 6, 10, 16 = 6 + 10, 26 = 10 + 16, etc.): (010)2, (01001)2,

(01001010)2, (0100101001001)2, etc.
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Squares

Any sufficiently long binary word must contain a square factor.

Indeed, let x be a word over Σ2. Suppose x starts with 0 (if x starts with

1 the reasoning is the same). If x does not contain squares, then the

second letter of x must be 1. The third letter of x must therefore be 0,

since otherwise x contains the square 11. But then any letter following

010 creates a square factor (either 02 or (01)2).

In other words, we say that squares are unavoidable with two letters.
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Squares

The Thue–Morse word contains infinitely many square factors.

In fact, Brlek proved that w2 is a square factor of the Thue–Morse word

if and only if w is of one of the following forms: τ i(0), τ i(1), τ i(010),

τ i(101), for some i ≥ 0.

So the square factors of the Thue–Morse word have length either a power

of 2 or 3 times a power of 2.
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Overlaps

What if we can use three letters then? Axel Thue in early 1900’s proved

that it is possible to construct arbitrarily long words over an alphabet

with three or more letters with the property that no factor is a square. So

squares are avoidable with three letters.

He also proved that there exist infinite binary words in which no factor

has exponent larger than 2. An overlap is a word of the form auaua, for

a (possibly empty) word u and a letter a. An overlap is therefore a word

whose exponent is larger than 2, but since auaua = (au)2+1/|au|, the

exponent of an overlap can be smaller than 2 + ε for any real number ε.
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Overlap-Freeness

A word is overlap-free if it avoids overlaps, that is, if none of its factors is

an overlap.

Theorem 6

The Thue–Morse word t is overlap-free.

Therefore, any square in t is followed by the letter different from its first

letter.
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Overlap-Freeness

Séébold proved this remarkable result:

Theorem 7 (Séébold, 1985)

The Thue–Morse word t and its complement t (which is the fixed point

starting with 1 of the morphism τ : 0 7→ 01, 1 7→ 10) are the only pure

morphic overlap-free binary words.

The twisted Thue–Morse word

tt = 010011010010110011010011001011010 · · · , although is not pure

morphic, is overlap-free too.
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Overlap-Freeness

The Thue–Morse word is a paradigmatic example of binary overlap-free

word also in view of the following theorem of Restivo and Salemi:

Theorem 8 (Restivo, Salemi, 1985)

Every binary overlap-free finite word is, up to removing one or two letters

at the beginning and/or at the end, the image under the Thue–Morse

morphism τ of another binary overlap-free word.

Moreover, this decomposition is unique if the length of the word is at

least 7.

For example, consider the overlap-free word w = 0010011. Then,

w = 00τ(10)1.

The previous theorem holds true in the more general case of words

avoiding 7/3-powers.
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Overlap-Freeness

There is also a version for infinite words:

Theorem 9

Every binary overlap-free infinite word x is equal to uτ(y) where

u ∈ {ε, 0, 1, 00, 11}, τ is Thue–Morse morphism and y is another binary

overlap-free word.

So for example, the twisted Thue–Morse word tt is equal to 0τ(tt).
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Overlap-Freeness

About larger alphabets, Allouche and Shallit proved the following result

about generalized Thue–Morse words.

Theorem 10

Let sk(n) denote the sum of the digits in the base-k representation of n.

The word tk,m, defined by taking the sequence of sums of the digits in

the base-k representation of n modulo m, is overlap-free if and only if

m ≥ k.

Moreover, tk,m always contains infinitely many squares, and contains

infinitely many palindromes if and only if m ≤ 2.

Morton and Mourant proved that tk,m is ultimately periodic if and only if

m divides k − 1.
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Square-Freeness

Let x be an infinite word over Σ2. Define the word x′ by

x′n = 1 + xn+1 − xn. Notice that x′ is a word over Σ3.

Applying this transformation to the Thue–Morse word t one obtains the

word

vtm = 210201210120210201202101210201210120210 · · ·

It can be proved that the word vtm is the word whose nth letter is the

number of 1’s between the nth and the (n+ 1)th occurrence of 0 in t.

We already mentioned that it is also the fixed point of the morphism

0 7→ 1, 1 7→ 20, 2 7→ 210.
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Square-Freeness

A similar word is the one whose nth letter is the number of 0’s between

the nth and the (n+ 1)th occurrence of 1 in t:

vtm′ = 012021012102012021020121012021012102012 · · ·

Clearly, since t does not contain 000 nor 111, the words vtm and vtm′

are the same word up to exchanging 0 and 2. So, t′ is generated by the

morphism 0 7→ 012, 1 7→ 02, 2 7→ 1.

Proposition 11

The words vtm and vtm′ are square-free. Hence, there exist infinite

ternary square-free words.

Proof.

We prove that the word vtm is square-free. If w1w2 · · ·wnw1w2 · · ·wn,

wi ∈ {0, 1, 2}, were a factor of vtm, then

01w101w20 · · · 1wn01w101w20 · · · 1wn0 would be a factor of t, which

contradicts the overlap-freeness of t.
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Square-Freeness

Remark 12

Taking either of vtm or vtm′ modulo 2, one obtains the period-doubling

word:

d = 010001010100010001000101010001010100010 · · ·

Instead, the complement of the period-doubling word

d = 101110101011101110111010101110101011101 · · ·

can be obtained by taking the absolute value of the consecutive

differences in the Thue–Morse word. Or, equivalently, by taking the

consecutive sums modulo 2 in t.
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Square-Freeness

Do ternary square-free words exist that are fixed point of a uniform

morphism? The answer is yes: an example is the fixed point of the Leech

morphism, which has length 13:

0 7→ 0121021201210

1 7→ 1202102012021

2 7→ 2010210120102
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Avoiding Long Squares

Squares are unavoidable with two letters, and the Thue–Morse word

contains infinitely many distinct squares. So, does an infinite word over

Σ2 exist with only a finite number of square factors? The answer to this

question is positive.

For example, the paperfolding word contains only 8 distinct square

factors: 02, (001)2, (00110)2, (011)2, (10)2, (10011)2, 12, and (110)2.

Carpi showed that the Oldenburger–Kolakoski word contains no square

longer than 54.

Entringer, Jackson and Schatz proved that the image under the morphism

0 7→ 1100

1 7→ 0111

2 7→ 1010

of any ternary square-free word is a binary word containing only the

squares 02, 12, (01)2, (10)2 and (11)2.
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Avoiding Long Squares

Actually, it is possible to construct an infinite word over the alphabet Σ2

containing as square factors only 02, 12 and (01)2.

This is optimal both in number and in lengths of the squares.

An example of such a word is given by applying to any other ternary

square-free word the morphism of Harju and Nowotka:

0 7→ 111000110010110001110010

1 7→ 111000101100011100101100010

2 7→ 111000110010110001011100101100.

On the contrary, rich words cannot avoid long square factors:

Proposition 13

A recurrent rich infinite word contains arbitrarily long squares.
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k-Freeness

Definition 14

An infinite word x is said to be k-power-free, or k-free, if there exists an

integer k ≥ 2 such that for every finite factor u of x, one has that uk is

not a factor of x.

An infinite word x is said to be ω-free if for every finite factor u of x

there exists an integer k ≥ 2 (depending on u) such that uk is not a

factor of x.

Of course, if a word is k-free for some integer k, then it is ω-free, but the

converse is not always true.
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k-Freeness

Since an aperiodic uniformly recurrent word cannot contain powers of

arbitrary order of the same factor, we have the following

Theorem 15

Every uniformly recurrent word is either purely periodic or ω-free.
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k-Freeness

We already mentioned that fixed points of primitive morphisms are

linearly recurrent. Brigitte Mossé proved the following result.

Theorem 16 (Mossé, 1992)

Every fixed point of a primitive morphism is either purely periodic or

k-free for some k.
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k-Freeness

About Toeplitz words (recall that the paperfolding word p is generated by

the partial word P = 0?1?; d is generated by P = 010?; lnd3 is

generated by P = 12?) we have the following beautiful result:

Theorem 17 (Boccuto, Carpi, 2020)

Let x be a Toeplitz word generated by the sequence of partial words (Pn)

of maximal length k. Then x is k-free.

Notice that the value of k in the previous statement is not always the

smallest possible, as witnessed by the the paperfolding word p, which is

generated by P = 0?1? but is indeed 3-free and not only 4-free.
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k-Free Morphisms

Definition 18

A k-free morphism is one that sends k-free words to k-free words.

An overlap-free morphism is defined analogously.

About square-free morphisms, Crochemore proved that:

1 A uniform morphism is square-free if and only if the images of

square-free words of length 3 are square-free.

2 A morphism over Σ3 is square-free if and only if the images of

square-free words of length 5 are square-free;
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k-Free Morphisms

Carpi proved that the Thue morphism

0 7→ 01201

1 7→ 020121

2 7→ 0212021

is the shortest (in terms of sum of the lengths of images) square-free

morphism over three letters.
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k-Free Morphisms

Notice that the morphism 0 7→ 012, 1 7→ 02, 2 7→ 1 is not square-free,

even if its fixed point vtm′ is square-free. Indeed, applied to the

square-free word 010, it produces the word 01202012, which contains the

square 2020.

It was shown by Brandenburg that the smallest square-free uniform

morphism has length 11. An example of such a morphism is given by

0 7→ 01021012102

1 7→ 01021202102

2 7→ 01210120212.
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k-Free Morphisms

About endomorphisms of Σ2, Karhumäki proved that a morphism µ

prolongable on 0 has a cube-free fixed point if and only if µ10(0) is

cube-free.

For general k, we have the following result.

Theorem 19 (Richomme, Wlazinski, 2007)

A uniform morphism µ on Σ is k-free for an integer k ≥ 3 if and only if

the images by µ of all k-free words of length at most k|Σ|+ k + 1 are

k-free.

If the morphism is not uniform, however, there is no finite test-set that

can be defined if the alphabet size is greater than 2.
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k-Free Morphisms

For overlap-free morphisms, already Thue in 1912 proved that the only

overlap-free endomorphisms of Σ2 are of the form τn or E ◦ τn, n ≥ 0,

where τ is the Thue–Morse morphism and E is the automorphism

exchanging 0 and 1.

Berstel and Séébold proved an equivalent condition: An endomorphism µ

of Σ2 is overlap-free if and only if the word µ(01101001) is overlap-free.
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k-Free Morphisms

For general alphabets, Séébold proved that the morphism

µ : a 7→ a(a+ 1) (modulo k) for every a ∈ Σk is overlap-free if and only

if k is odd (i.e., the cardinality of the alphabet is even).

As another construction, taking any permutation σ of Σk and defining

the morphism that maps each letter i to the rotation of σ that starts

with i, one obtains an overlap-free infinite word.

For example, the fixed point

0135241352403524015240132401354013521352403524015240

of 0 7→ 013524, 1 7→ 135240, 2 7→ 240135, 3 7→ 352401, 4 7→
401352, 5 7→ 524013 is an overlap-free word over 6 letters.
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k-Free Morphisms

In the case of uniform morphisms, Richomme and Wlazinski gave the

following characterization:

Theorem 20 (Richomme, Wlazinski, 2004)

A uniform endomorphism of Σk, k ≥ 3, is overlap-free if and only if it is

overlap-free on words of length up to k + 2.
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Critical Exponent

Cubes can be avoided over Σ2, as the Thue–Morse word avoids overlaps.

Another example of binary cube-free word is the word

lnd3 = 12112212112112212212112212112112212112 · · ·

fixed point of 1 7→ 121, 2 7→ 122 and also simple Toeplitz word generated

by P = 12?.

However, this word is not overlap-free (for example, it contains

12112112). In fact, this word contains (3− ε)-powers, for arbitrarily

small ε. (This can be easily seen from its Toeplitz definition.)

The Fibonacci word f contains cubes

(e.g. 00101001 · 00101001 · 00101001) but avoids 4th powers.

So the question one can ask is: What is the least real number β such

that no factor of a given word has exponent larger than β? This value is

called the critical exponent.
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Critical Exponent

Definition 21

The critical exponent of the infinite word x is the real number

ce(x) = sup{β | vβ ∈ Fact(x), v 6= ε}.

For example:

The critical exponent of the Thue–Morse word t is 2;

The critical exponent of the period-doubling word d is 4;

The critical exponent of the Rudin–Shapiro word rs is 4;

All paperfolding words have the same critical exponent, which is

equal to 3;

All Stewart words have the same critical exponent, which is equal to

3.

Gabriele Fici Combinatorics on Words



Critical Exponent

The critical exponent needs not to be an integer. For example, Carpi

proved that the critical exponent of the Oldenburger–Kolakoski word k is

8/3.

Actually, the critical exponent needs not to be a rational number either.

For example, Mignosi and Pirillo proved that the critical exponent of the

Fibonacci word f is 2 + ϕ ≈ 3.618, where ϕ = (1 +
√

5)/2 is the golden

ratio.

The critical exponent of the Pell word is 3 +
√

2 ≈ 4.4142.

Tan and Wen proved that the critical exponent of the Tribonacci word is

χ ≈ 3.1915, real solution of 2x3 − 12x2 + 22x− 13 = 0.

Notice that the critical exponent of an infinite word can be infinite. This

is the case, for example, of any (ultimately) periodic word.
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Critical Exponent

Definition 22

The asymptotic critical exponent of an infinite word x is the real number

ace(x) = lim sup
n→∞

{β | vβ ∈ Fact(x), |v| = n}

= sup{β | ∃ arbitrarily long v ∈ Fact(x) s.t. vβ ∈ Fact(x)}.

Clearly, ace(x) ≤ ce(x) and the two coincide if ce(x) is not rational.

The asymptotic critical exponent of the m-bonacci word is

2 + 1/(λm − 1) where 2− 1
m < λm < 1 is the unique positive real root of

the polynomial xm − xm−1 − . . .− x− 1. Hence, the asymptotic critical

exponent of the m-bonacci word is greater than 3 but smaller than

3 + 1
m−1 .

It has been recently proved by Luboḿıra Dvǒráková and Edita Pelantová

that for m-bonacci words the asymptotic critical exponent and the

critical exponent coincide.
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Critical Exponent

Definition 23

Let β be a rational number. We say that an infinite word x is β-free if

none of its factors has exponent equal to β; and β+-free if none of its

factors has exponent larger than β (but can have factors of exponent

equal to β).

For example:

The Thue–Morse word t is 2+-free (i.e., overlap-free) but not 2-free;

The paperfolding word p is 3+-free but not 3-free (however, the only

cubes it contains are 000 and 111);

The Rudin–Shapiro word rs is 4+-free but contains 4-powers.

On the other hand:

The period-doubling word d is 4-free but contains (4− ε)-powers,

for arbitrarily small ε;

All Stewart words are cube-free but contain (3− ε)-powers, for

arbitrarily small ε.
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Critical Exponent

Now, a natural question is: Does every real number larger than 1 is the

critical exponent of some word?

The following theorem was proved by Dalia Krieger and Jeffrey Shallit.

Theorem 24

The following statements hold:

1 For every real number β > 1 there exists an infinite word over some

alphabet whose critical exponent is β;

2 For every real number β ≥ 2 there exists an infinite binary word

whose critical exponent is β.
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Repetition Threshold

So, in order to avoid repetitions, the size of the alphabet matters. For

example, no ternary word exists with critical exponent 3/2. This leads us

to the following definition.

Definition 25

For every k ≥ 2, the repetition threshold RT (k) is the minimum of the

critical exponents of infinite words over Σk.

For example, we know that the Thue–Morse word avoids overlaps, so it

avoids any word whose exponent is larger than 2. Since any infinite

binary word contains squares, we have RT (2) = 2.
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Repetition Threshold

Over Σ3, we know that squares are avoidable. But what is then the

smallest exponent that can be avoided? The exact answer is 7/4.

Indeed, there are only finitely many ternary words avoiding 7/4-powers,

but it is possible to construct an infinite ternary word in which no factor

has exponent larger than 7/4, hence RT (3) = 7/4.

An example of 7/4+-free ternary word is the fixed point of the morphism

0 7→ 012021201021012102120210

1 7→ 120102012102120210201021

2 7→ 201210120210201021012102
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Repetition Threshold

For general size of the alphabet, the following important theorem, whose

statement was conjectured in 1972 by Françoise Dejean, has been finally

proved in 2011 with the effort of many researchers.

Theorem 26 (Threshold Theorem)

One has RT (2) = 2, RT (3) = 7/4, RT (4) = 7/5 and, for every k > 4,

RT (k) = k/(k − 1).

Several people, including Dejean herself, proved the statement for small

values of k. The breakthrough was a result of Carpi, who proved in 2007

that the conjecture holds true for every k ≥ 33. The last cases were

proved in 2011 by Currie and Rampersad and independently by Rao.
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Avoiding Palindromes

About avoidability of other kinds of patterns, let us see what happens if

one wants to avoid palindromes (of length > 1 of course).

The set of palindromic factors of an infinite word can be finite or infinite.

For example, the word (01)ω contains arbitrarily long palindromic factors,

whereas the word (012)ω does not contain any palindromic factor of

length greater than 1.
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Avoiding Palindromes

But there also exist aperiodic words having finitely many palindromic

factors. For example:

the Chacon word does not contain palindromes of length ≥ 13;

the Rudin–Shapiro word does not contain palindromes of length

≥ 15;

any paperfolding word contains only 29 palindromes, the longest of

which has length 13;

any Stewart word contains only 15 palindromes, the longest of which

has length 7.

So, a natural question arises here: what is the minimum number of

palindromes that an infinite word must contain?
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Avoiding Palindromes

The word (012)ω contains 4 palindromes: ε, 0, 1, 2. However, an infinite

word over Σ2 must contain at least 9 palindromes. For example, the

palindromes in (001011)ω are: ε, 0, 1, 00, 11, 010, 101, 0110, 1001.

In the aperiodic case, we have the following result.

Theorem 27 (Fici, Zamboni, 2013)

Every aperiodic word contains at least 5 palindromes.

Every aperiodic binary word contains at least 11 palindromes.

For example, the image of the Fibonacci word f under the morphism

µ : 0 7→ 0, 1 7→ 12, µ(f) = 0120012012001200120120012 · · · , contains

only 5 palindromes, namely: ε, 0, 1, 2 and 00.

The 11 palindromes in ψ(f), where ψ : 0 7→ 0, 1 7→ 01101 are

ε, 0, 1, 00, 11, 000, 010, 101, 0110, 1001, 10001.
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Avoiding Palindromes

The previous examples are not closed under reversal.

Berstel et al. exhibited a uniformly recurrent word over a four-letter

alphabet closed under reversal and containing only 5 palindromes (the

letters and the empty word):

012310230132102301231032013210 · · ·

defined as the limit of the sequence defined by U0 = 01 and

Un+1 = Un23Ũn.

An aperiodic binary word closed under reversal, instead, must contain at

least 13 palindromes. An example is given by the limit of the sequence

defined by U0 = 01001101000110010 and for n ≥ 0{
U2n+1 = U2n1100U2n

U2n+2 = U2n+10011U2n+1

whose set of palindromes is

{ε, 0, 00, 000, 00100, 001100, 010, 0110, 1, 10001, 1001, 101, 11}.
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The Ruler Word

One can define words over an infinite alphabet, for example by taking

Σ = N.

An example of such a word is the infinite Zimin word, also called ruler

sequence, or infini-bonacci word:

r2 = 010201030102010401020103010201050102 · · ·

It can be defined as the limit of the sequence of finite words z0 = 0,

zn = zn−1(n)zn−1, for n > 0.

The first few values of the sequence are: z0 = 0, z1 = 010,

z2 = 0102010, z3 = 010201030102010, etc.

The words zn are usually called Zimin words.
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The Ruler Word

r2 = 010201030102010401020103010201050102 · · ·

The word r2 has several remarkable properties:

First of all, its n-th term is ν(n), the 2-adic valuation of n, i.e., the

position from right to left of the last 1 in the binary representation of n.

In other words, ν(n) is the largest integer k such that 2k divides n.
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The Ruler Word

r2 = 010201030102010401020103010201050102 · · ·

But it is also the lexicographically least word avoiding squares.

In the word r2, 0 occurs in every odd position (starting from 1). Deleting

all the 0s in r2, one obtains a word isomorphic to r2 (actually, the word

obtained mapping i to i+ 1 for all i), which is precisely the sequence of

2-adic valuations of 2n, and is the lexicographically least word avoiding

squares over the alphabet N0 = {1, 2, 3, . . .}.
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The Ruler Word

But what is the lexicographically least word avoiding squares over the

alphabet Σ3?

Problem 28

Characterize the lexicographically least word avoiding squares over the

alphabet Σ3.

The word exists since it can be constructed by the following algorithm:

Start form 0102012; for every n > 7, define pn as the prefix of length n

of the least square-free word over {0, 1, 2} of length 2n. Then take the

limit as n goes to infinity.

Indeed, it can be proved that if xy ∈ Σ∗3 is square-free and |y| = |x|, then

x can be extended to an infinite square-free word over Σ3.

The first few letters are:

01020120210120102012021020102101201020120210120102 · · ·

Gabriele Fici Combinatorics on Words



The Ruler Word

On the other hand, the lexicographically least word avoiding cubes over

the alphabet Σ2 is:

00100101001001100100101001001100100101001011001001 · · ·

Again, one can prove that this word exists but no algorithm is known for

constructing it.

Problem 29

Characterize the lexicographically least word avoiding cubes over the

alphabet Σ2.
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The Ruler Word

The word r2 is a Toeplitz word generated by the sequence of patterns 0?,

1?, . . ., n?, . . .

There is a similar word, that is generated by the sequence of patterns

0??, 1??, . . ., n??, . . .

r′2 = 0120310420150310260140210370 · · ·

The word r′2 can also be obtained starting from 0120 and applying the

2-letter substitution ab 7→ 0(a+ 1)(b+ 1), for every a, b ∈ N.
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The Ruler Word

The word r2 is also the fixed point of the (infinite) morphism

0 7→ 01, 1 7→ 02, . . . , (n− 1) 7→ 0n, . . .

Recall that fixing an integer m > 1, the (primitive) morphism

0 7→ 01, 1 7→ 02, . . . , (m− 2) 7→ 0(m− 1), (m− 1) 7→ 0

generates the m-bonacci word.

This is why the word r2 is sometimes called the infini-bonacci word.
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The Ruler Word

The word r2 is also the fixed point of the (infinite) morphism

0 7→ 01, 1 7→ 02, . . . , (n− 1) 7→ 0n, . . .

It is worth mentioning that Cobham proved the following

Theorem 30

Let x be a morphic word defined on the finite alphabet Σ. Let V ⊂ Σ

and x′ be the word obtained from x by erasing all occurrences of the

letters belonging to V . Then the word x′ is either finite or morphic.
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The Ruler Word

The ruler word r2 can also be obtained iterating the right palindromic

closure operator.

Given an infinite directive sequence a = (a1, a2, a3, . . .) one builds an

infinite word as the limit of the sequences of words wn defined by:

w1 = a1 and for n > 1, wn is the shortest palindrome that begins in

wnan. The directive sequence that generates the ruler word is N.

Taking as directive sequence the natural numbers modulo 2,

a = (0, 1, 0, 1, 0, 1, 0, . . .), then the right palindromic closure operator

generates the Fibonacci word 0100101001001 · · · ; taking as directive

sequence the natural numbers modulo 3, a = (0, 1, 2, 0, 1, 2, . . .), then

the right palindromic closure operator generates the Tribonacci word

01020100102010 · · · , and so on, for every m-bonacci word.
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The Ruler Word

Another way to construct the m-bonacci word, m ≥ 2, is the following:

Take the sequence of the 2-adic valuations of the positive integers whose

binary representation does not contain 0m.

n binary 2-adic Fibonacci Tribonacci

1 1 0 0 0

2 10 1 1 1

3 11 0 0 0

4 100 2 2

5 101 0 0 0

6 110 1 1 1

7 111 0 0 0

8 1000 3

9 1001 0 0

10 1010 1 1 1

11 1011 0 0 0

12 1100 2 2

Gabriele Fici Combinatorics on Words



The Ruler Word

Taking the ruler sequence r2 modulo k, one obtains the fixed point of the

morphism 0 7→ 01, 1 7→ 02, . . . , (k − 1) 7→ 00, also called k-th

generalized period-doubling word dk.

The same word can be obtained as a Toeplitz word generated by the

pattern P = zk?, where zk is the kth Zimin word.

For example, taking the word r2 modulo 3, one obtains the generalized

period-doubling word

d3 = 0102010001020101010201000102010201 · · ·

fixed point of the morphism 0 7→ 01, 1 7→ 02, 2 7→ 00 and Toeplitz word

generated by 0102010?.
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The Ruler Word

n binary 2-adic d d3

1 1 0 0 0

2 10 1 1 1

3 11 0 0 0

4 100 2 0 2

5 101 0 0 0

6 110 1 1 1

7 111 0 0 0

8 1000 3 1 0

9 1001 0 0 0

10 1010 1 1 1

11 1011 0 0 0

12 1100 2 0 2

13 1101 0 0 0

14 1110 1 1 1

15 1111 0 0 0

Table: The 2-adic valuations of the first few positive integers. Taking the

sequence modulo 2, one obtains the period-doubling word

d = 01000101010001000 · · · . Taking the sequence modulo 3, one obtains the

fixed point of the morphism 0 7→ 01, 1 7→ 02, 2 7→ 00, the generalized

period-doubling word d3 = 01020100010201020 · · · .
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The Ruler Word

More generally, if one takes the sequence of p-adic valuations (the largest

integer k such that pk divides n) of positive integers, then one obtains

the lexicographically least word (over the alphabet N) avoiding p-powers.

For example, the sequence of the 3-adic valuations of n:

r3 = 00100100200100100200100100300100100200100100200100100300 · · ·

is the lexicographically least word avoiding cubes. It is isomorphic to the

word obtained from it by removing all 0s, which is the lexicographically

least word avoiding cubes over the infinite alphabet N0 = {1, 2, . . .}.

The word r3 is the fixed point of the (infinite) morphism

0 7→ 001, 1 7→ 002, . . . , (n− 1) 7→ 00n, . . .
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The Ruler Word

The word r3 is the fixed point of the (infinite) morphism

0 7→ 001, 1 7→ 002, . . . , (n− 1) 7→ 00n, . . .

For any k ≥ 2, taking the word r3 modulo k one obtains the fixed point

of the morphism 0 7→ 001, 1 7→ 002, . . . , (k − 1) 7→ 000. For example,

for k = 2, one obtains the word

001001000001001000001001001001001000001001000001 · · ·

whereas for k = 3, one obtains the word

001001002001001002001001000001001002001001002001 · · ·
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The Ruler Word

n ternary 3-adic mod 2 mod 3

1 1 0 0 0

2 2 0 0 0

3 10 1 1 1

4 11 0 0 0

5 12 0 0 0

6 20 1 1 1

7 21 0 0 0

8 22 0 0 0

9 100 2 0 2

10 101 0 0 0

11 102 0 0 0

12 110 1 1 1

13 111 0 0 0

14 112 0 0 0

15 120 1 1 1

16 121 0 0 0

Table: The 3-adic valuations of the first few positive integers.
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The Ruler Word

The period-doubling word d, fixed point of 0 7→ 01, 1 7→ 00 is also the

Toeplitz word generated by 010?.

The period-doubling word d is also the sequence whose n-th element is

the parity of the 2-adic valuation of n; whereas its binary complement

d = 101110101011101110111010101110 · · ·

is the sequence whose n-th element is the parity of the 2-adic valuation

of 2n.

Equivalently, d can be obtained from d by erasing every other term. We

have seen that d is also equal to und4 modulo 2.
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The Ruler Word

By the way, there are other binary words with the property that erasing

every other term one obtains the complement of the original word.

One example is the Thue–Morse word t = 0110100110010110 · · · .

Indeed, we can write t as t� t, i.e., t is the perfect shuffle1 of itself with

its complement:

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 . . .

1The perfect shuffle of two words a1a2a3 · · · and b1b2b3 · · · is the word

a1b1a2b2a3b3 · · ·
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The Ruler Word

There are other words that can be written as perfect shuffles. For

example, we have seen that the ruler word r2 can be written as

r2 = 0ω � (r2 + 1):

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 5 · · ·
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The Ruler Word

We also have:

the period-doubling word: d = 0ω � d

0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 01 0 1 0 0 0 1 0 0 · · ·
the regular paperfolding word: p = (01)ω � p

0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 01 1 0 · · ·
the alternate paperfolding word: a = (01)ω � a

0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 · · ·
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The Ruler Word

Remark 31

Let x and y be infinite words. Then y = x� x if and only if y = τ(x),

where τ is the Thue–Morse morphism.

So for example, we already mentioned that the Stewart–Thue–Morse

word stm = 01011001011001 · · · is the perfect shuffling of the Stewart

choral word st = 001001011 · · · , fixed point of the morphism

0 7→ 001, 1 7→ 011, with its complement st.

While one has that y = 0ω � x if and only if y = δ(x), where δ is the

period-doubling morphism.
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The Ruler Word

Another word that is related to the 2-adic valuation of n is the von

Neumann word

v = 00100110010011100100110010011110010011001 · · ·

Indeed,

v =
∏
n≥1

01ν(n) = 010011010012010011010013010011010012010011010014 · · ·

In other words, the sequence obtained from v by taking the number of

1’s between two consecutive 0’s is r2.

By comparison, recall that the word vtm is the word whose nth letter is

the number of 1’s between two consecutive 0’s in the Thue–Morse word t.
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Sums of Blocks of Length 2

The Thue–Morse word is a concatenation of blocks of the form 01 or 10

t = 01 · 10 · 10 · 01 · 10 · 01 · 01 · · ·

that alternate exactly as 0 and 1 alternate in t.

If we take the sequence of the sums of these blocks we obtain of course

the periodic word 1ω = 111 · · ·

However, if we take the sequence of sums of blocks of length 2 skipping

the first letter (i.e., the sequence t(2i) + t(2i+ 1), i > 0) we obtain the

word

vtm = 210201210120210201202101210201210120210121020120 · · ·

which, taken modulo 2, is the period-doubling word

d = 010001010100010001000101010001010100010 · · ·
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Sums of Blocks of Length 2

Now, if we take the sequence of sums of blocks of length 2 in the

Rudin–Shapiro word rs = 0001001000011 · · · , always skipping the first

letter (i.e., the sequence rs(2i) + rs(2i+ 1), i > 0) we obtain the word:

011002110111201001100212211 · · ·

which, taken modulo 2, is nothing else than the alternate paperfolding

word

a = 011000110111001001100010011100110 · · ·
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Sums of Blocks of Length 2

sum mod 2 sum mod 2

Thue–Morse vtm d Rudin–Shapiro a

1 1 0

10 1 2 0 0 0 0

11 0 1

100 1 1 1 0 1 1

101 0 0

110 0 0 0 1 1 1

111 1 0

1000 1 2 0 0 0 0

1001 0 0

1010 0 0 0 0 0 0

1011 1 1

1100 0 1 1 1 2 0

1101 1 1

1110 1 2 0 0 1 1

1111 0 1

10000 1 1 1 0 1 1

Table: The sequence of sums of blocks of two letters in the Thue–Morse word

and in the Rudin–Shapiro word.
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Runlength Encoding and Self-Generating Sets

Another interesting remark about the Thue–Morse word

t = 0110100110010110 · · · . Writing the runlength encoding of t one gets

the word

∆(t) = 1211222112112112221122211 · · ·

(which can also be defined as the fixed point of 1 7→ 121, 2 7→ 12221)

whose partial sums 1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20 . . . form the

smallest set S of positive integers (for the lexicographic order) such that

n ∈ S if and only if 2n /∈ S.

The set S can be constructed by a min-excluded algorithm:

S 1 3 4 5 7 9 11 12 13

S 2 6 8 10 14 18
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Runlength Encoding and Self-Generating Sets

The characteristic sequence of S is precisely the word

d = 101110101011101110 · · · whose n-th element is the parity of the

2-adic valuation of 2n.

Recall that d is also the complement of the period-doubling word

d = 010001010100010001 · · · which is the sequence of the parity of 1s

between two consecutive 0s (or, equivalently, the parity of 0s between

two consecutive 1s) in the Thue–Morse word.

The word d (resp., d) can be obtained from the word ∆(t), the runlength

encoding of the Thue–Morse word, by applying the morphism

1 7→ 0, 2 7→ 10 (resp., 1 7→ 1, 2 7→ 01).
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Runlength Encoding and Self-Generating Sets

Le us now take the set defined by: 0 ∈ S; if x ∈ S then 3x ∈ S and

3x+ 1 ∈ S.

S 0 1 3 4 9 10 12 13 27 28 30

S 2 5 6 7 8

The integers in S are precisely those whose ternary expansion does not

contain 2.

The sequence of elements of S taken modulo 2 is precisely the

Thue–Morse word t.
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Runlength Encoding and Self-Generating Sets

Another self-generating set is the following: Let T be defined by the

rules: 1, 2 ∈ T ; if x ∈ T then 2x+ 1 ∈ T and 4x+ 2 ∈ T .

T 1 2 3 5 6 7 10 11 13 14 15

T 4 8 9 12

The sequence of elements in T taken modulo 2 forms the word

f = 1011010110110 · · · , which is the binary complement of the

Fibonacci word f = 0100101001001 · · ·

Indeed, the elements of T are the positive integers whose binary

representation does not contain 00.

In fact, the complement of the Fibonacci word can be obtained taking

the last digit of the binary representation of positive integers whose

binary representation does not contain 00.
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Runlength Encoding and Self-Generating Sets

n binary 2-adic Fibonacci Tribonacci

1 1 0 0 0

2 10 1 1 1

3 11 0 0 0

4 100 2 2

5 101 0 0 0

6 110 1 1 1

7 111 0 0 0

8 1000 3

9 1001 0 0

10 1010 1 1 1

11 1011 0 0 0

12 1100 2 2

13 1101 0 0 0

14 1110 1 1 1

15 1111 0 0 0

16 10000 4

Table: The 2-adic valuations of the first few positive integers. Skipping the

integers that contain 00 one obtains the Fibonacci word. Skipping the integers

that contain 000 one obtains the Tribonacci word.

Gabriele Fici Combinatorics on Words


