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Infinite Words

We start by giving the fundamental definitions about infinite words.

Definition 1

An infinite word x = x0x1x2 · · · over Σ is a non-ending sequence of
elements of Σ, that is, a map from the set N of natural numbers to Σ.

We let ΣN denote the set of all infinite words over Σ, that is, the set of
all maps from N to Σ.
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Infinite Words

Definition 2

An infinite word x is purely periodic if x = wω for some nonempty word
w, where wω stands for the infinite word www · · · obtained by
concatenating an infinite number of copies of w.

An infinite word x is ultimately periodic if x is not purely periodic but
can be written as x = ux′ for a finite nonempty word u (that we suppose
of minimal length, to make the expression x = ux′ unique) and a purely
periodic word x′.

An infinite word is aperiodic if it is not purely periodic nor ultimately
periodic.

For example, x = 01(001)ω is purely periodic, since we can write it as
x = (010)ω; while x = 10(100)ω is ultimately periodic. Notice that the
factor 101 occurs only once in it.
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Infinite Words

The property of being periodic/aperiodic can be related to the
unbordered factors of an infinite word.

Theorem 3

Every aperiodic infinite word contains arbitrarily long unbordered factors,
whereas in a purely periodic infinite word the maximum length of an
unbordered factor is bounded.

Note that there exist ultimately periodic words containing arbitrarily long
unbordered factors (e.g., the word x = 01ω = 011111 · · · ).
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Infinite Words

The following theorem extends the Lyndon–Schützenberger theorem to
purely periodic words.

Theorem 4

Let x, y ∈ Σ+. The following conditions are equivalent:

1 xy = yx;

2 xω = yω;

3 (xy)ω = (yx)ω;

4 (xy)ω = xω;

5 (xy)ω = yω.

Gabriele Fici Combinatorics on Words



Infinite Words

Another aspect of infinite words often taken into account (which comes
from symbolic dynamics) is related to the occurrences of finite factors.

Definition 5

An infinite word x is recurrent if every finite factor of x occurs in x
infinitely often. Equivalently, x is recurrent if and only if every finite
prefix of x has a second occurrence as a factor.

An infinite word x is uniformly recurrent if every finite factor of x occurs
syndetically (that is, it occurs infinitely often and with bounded gaps).
Equivalently, x is uniformly recurrent if and only if for every finite factor
u of x there exists an integer m (that depends on u) such that u occurs
in every factor of x of length m|u|.

An infinite word x is linearly recurrent if there exists an integer m such
that for every finite factor u of x, u occurs in every factor of x of length
m|u|.
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Remark 6

An ultimately periodic word is not recurrent. A purely periodic word is
(linearly) recurrent. Therefore, a recurrent word is either aperiodic or
purely periodic.

Remark 7

Let x be an aperiodic infinite word. If there exists a nonempty word u
such that un is a factor of x for every n ≥ 0, then x cannot be uniformly
recurrent.
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Infinite Words

Definition 8

Given an infinite word x, the recurrence function Rx(n) is defined as the
minimum m such that every factor of length m of x contains at least one
occurrence of every factor of length n of x.

For a uniformly recurrent word x, the recurrence function is defined for
every n. For a linearly recurrent word, the recurrence function is a linear
function (whence the name).

Equivalently, a recurrent word x is linearly recurrent (with constant m,
i.e., Rx(n) ≤ mn for every n ≥ 0) if and only if for every factor u of x,
the distance between two consecutive occurrences of u in x is at most
(m− 1)|u|+ 1.
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Infinite Words

Example 9

The word x =
∏
n>0 01n = 010110111 · · · is aperiodic and not recurrent.

For example, 010 occurs only once in it.

The infinite word obtained by concatenating the binary representation of
n for every n ≥ 0, called the Champernowne word

C2 = 01101110010111011110001001101010111100110111101111 · · ·

is aperiodic and recurrent but not uniformly recurrent.
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Infinite Words

The Thue–Morse word

t = 0110100110010110100101100110100110010110011010010110100 · · ·

is the word such that the letter in position n ≥ 0 is equal to the number
of occurrences of 1, modulo 2, in the binary representation of n. So, for
example, the binary representation of 5 is 101, which has an even number
of 1s, hence t(5) = 0, while the binary representation of 2 is 10, which
has an odd number of 1s, hence t(2) = 1.

The Thue–Morse word can be generalized in several ways. For example,
by considering the infinite word whose nth letter is equal to the number
of occurrences of 1, modulo k, in the binary representation of n. For
k = 3 one obtains the word

t̂ = 011212201220200112202001200101121220200120010112200101120 · · ·
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Infinite Words

Another possible generalization of the definition of the Thue–Morse word
gives the Rudin–Shapiro word

r = 0001001000011101000100101110001000010010000111011110110 · · ·

whose nth letter is equal to the number of occurrences (possibly
overlapping) of 11, modulo 2, in the binary representation of n ≥ 0.

Another possible generalization is to consider the number of occurrences
of k − 1, modulo 2, in the k-ary representation of n ≥ 0. For k = 3, this
gives the Mephisto–Waltz word

mw = 00100111000100111011011000100100111000100111011011000 · · ·
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Infinite Words

Since the Thue–Morse word can also be defined as the word whose nth
letter is the sum of digits modulo 2 of the binary representation of n, we
can define the generalized Thue–Morse word tk, k ≥ 2, as the word
whose nth letter is the sum of digits, modulo k, of the k-ary
representation of n ≥ 0. For k = 3 we get

t3 = 012120201120201012201012120120201012201012120012120201 · · ·

A less studied word, called twisted Thue–Morse word, is the word such
that the letter in position n ≥ 1 is equal to the number of occurrences of
0, modulo 2, in the binary representation of n:

tt = 01001101001011001101001100101101001011001101001011010011 · · ·
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n binary occ. of 1 mod. 2 mod. 3 occ. of 11 mod. 2

0 0 or ε 0 0 0 0 0
1 1 1 1 1 0 0
2 10 1 1 1 0 0
3 11 2 0 2 1 1
4 100 1 1 1 0 0
5 101 2 0 2 0 0
6 110 2 0 2 1 1
7 111 3 1 0 2 0
8 1000 1 1 1 0 0
9 1001 2 0 2 0 0
10 1010 2 0 2 0 0
11 1011 3 1 0 1 1
12 1100 2 0 2 1 1
13 1101 3 1 0 1 1
14 1110 3 1 0 2 0
15 1111 4 0 1 3 1
16 10000 1 1 1 0 0
17 10001 2 0 2 0 0

Table: The number of 1s in the binary representations of the first few natural
numbers. Taking the number of 1s modulo 2, one obtains the Thue–Morse
word. Taking the number of 1’s modulo 3, one obtains the ternary Thue–Morse
word. Taking the number of 11’s modulo 2, one obtains the ternary
Rudin–Shapiro word.
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Infinite Words

The Fibonacci word

f = 0100101001001010010100100101001001010010100100101001010 · · ·

is the word such that, for every n > 0, the distance between the nth 0
and the nth 1 is n.

The Fibonacci word is an example of a Sturmian word, an aperiodic word
having exactly n+ 1 distinct factors of length n, for every n ≥ 0. We will
have a lecture devoted to Sturmian words.
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Infinite Words

The period-doubling word

d = 0100010101000100010001010100010101000101010001000100010101 · · ·

is the word whose nth letter is the parity of the number of trailing 0s in
the binary representation of n > 0.
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Infinite Words

Another example is the (regular) paperfolding word

p = 001001100011011000100111001101100010011000110111001001 · · ·

which is the sequence of ridges and valleys obtained by unfolding a sheet
of paper that has been folded in half infinitely many times in the same
direction.

Figure: The paperfolding word p = 001001100011011 · · · can be obtained by
unfolding a sheet of paper which has been folded in half infinitely many times
along the same direction.
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Infinite Words

The n-th letter of the paperfolding word is actually the digit on the left
of the rightmost 1 in the binary representation of n (writing the binary
representation with leading zeroes).

n binary p

1 000001 0
2 000010 0
3 000011 1
4 000100 0
5 000101 0
6 000110 1
7 000111 1
8 001000 0
9 001001 0
10 001010 0
11 001011 1
12 001100 1
13 001101 0
14 001110 1
15 001111 1

Table: The nth letter of the paperfolding word p is the digit (underlined) on
the left of the last 1 in the binary representation of n.
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Infinite Words

The paperfolding word can be therefore defined in terms of
recognizability of words.

Let w be the binary representation of n (with leading zeroes). Then n-th
letter of p is 1 if and only if w̃ belongs to the language 0∗(11)(0 + 1)∗.

So, the n-th letter of p is determined by reading the (reverse of the)
binary representation of n on a deterministic finite automaton (with
output) recognizing the language 0∗(11)(0 + 1)∗.

0start 0 0 1

0

1 0

1

0,1 0,1

For this reason, the regular paperfolding word is a 2-automatic word, i.e.,
its digits are produced by a finite state automaton with output taking as
inputs the binary representations of integers.
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Infinite Words

A word defined by means of the ternary representation of integers is

lnd3 = 1211221211211221221211221211211221211211221221211 · · ·

whose nth letter is the last nonzero digit in the ternary representation of
n ≥ 1. (This can be generalized to every base k ≥ 3.)

The Sierpiński word (also known as Cantor word)

s = 0101110101111111110101110101111111111111111111111111110 · · ·

is the word such that the letter in position n ≥ 0 is 1 if the ternary
representation of n contains at least a 1.

The words lnd3 and s are 3-automatic (notice that s is not uniformly
recurrent as it contains arbitrarily large powers of 1).
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Infinite Words

A kind of different example of an infinite word is the
Oldenburger–Kolakoski word. It is the fixed point over the alphabet
{1, 2} of the operator ∆, called runlength encoding, which counts the
lengths of the maximal consecutive blocks (runs) of the same letter.

For example, the runlength encoding of the word w = 001110 is
∆(w) = 231, since in w there is a run of two 0s followed by a run of
three 1s followed by a run of one 0.

For a word over the alphabet {1, 2} that has the property that neither of
111 and 222 occurs as a factor, the runlength encoding operator
produces a word over the same alphabet {1, 2}.

The Oldenburger–Kolakoski word

k = 2211212212211211221211212211211212212211212212112112212 · · ·

is one of the two the fixed points of the runlength encoding operator (the
other is the word 1k = 1221121221 · · · ).
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In fact, the Oldenburger–Kolakoski word is an example of self-generating
word. Starting from the first letter, 2, by definition the first run must
have length 2, so the word begins with 22; but this implies that also the
second run must have length 2, hence k begins with 2211; now the third
and the fourth run have length 1, so k begins with 221121, and so on.

It is an open problem whether the Oldenburger–Kolakoski word is
recurrent.
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Infinite Words

Another definition often taken into account when studying infinite words
is the following:

Definition 10

Let x be an infinite word over Σ. The frequency of the letter a ∈ Σ in x,
when it exists, is the limit of the ratio between the number of
occurrences of the letter a in the prefix of x of length n, and n.

For example, in the Thue–Morse word t one has that the frequency of 0
and the frequency of 1 are both equal to 1/2.

In the Fibonacci word, the frequency of 0 is
limn→∞ Fn/Fn+1 = 1/ϕ = ϕ− 1 ≈ 0.618 and the frequency of 1 is
limn→∞ Fn/Fn+2 = 1/ϕ2 = 2− ϕ ≈ 0.382.

It is conjectured that the letter frequencies of the Oldenburger–Kolakoski
are equal to 1/2.
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Infinite Words

Definition 11

An infinite word is rich if every its finite factor is rich, that is, contains as
many nonempty palindromes as its length.

For example, the Fibonacci word (actually, every Sturmian word) is rich.

The period-doubling word is rich.

On the opposite, the Thue–Morse word, although it contains infinitely
many palindromes, is not rich since, for example, its prefix 011010011 is
not rich (the complete return 11010011 to the palindrome 11 is not a
palindrome).
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Infinite Words

Proposition 12

A rich infinite word is recurrent if and only if its set of factors is closed
under reversal.

However, there exist aperiodic recurrent rich infinite words that are not
uniformly recurrent. An example is the Sierpiński word
s = 0101110101111111110 · · ·

Proposition 13

A recurrent rich infinite word has infinitely many palindromic prefixes.
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Limits of Sequences

One way to define an infinite aperiodic word consists in considering a
sequence of finite words of increasing length that are one prefix of
another and taking the limit of the sequence.

This limit is well defined in the (ultra)-metric space of infinite words
where the distance between two words x and y is defined as 2−δ, where δ
is the length of the longest common prefix of x and y, provided that one
defines, for a finite word w and an infinite word x, d(w, x) = d(w#ω, x),
where # is a symbol not belonging to the alphabet of x.
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Limits of Sequences

For example, over Σ2, define the sequence of words t0 = 0 and
tn = tn−1tn−1 for every n > 0, where tk is the binary complement of tk,
that is, the word obtained from tk by applying the automorphism of Σ2

that exchanges 0 and 1.

The limit for n that goes to infinity of the sequence tn is the
Thue–Morse word t.

t0 = 0

t1 = 01

t2 = 0110

t3 = 01101001

t4 = 0110100110010110

t5 = 01101001100101101001011001101001

...
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Limits of Sequences

t0 = 0

t1 = 01

t2 = 0110

t3 = 01101001

t4 = 0110100110010110

Remark 14

For every even n, the word tn is a palindrome, while for every odd n, the
word tn is an antipalindrome, that is, its reversal t̃n is equal to its
complement tn.

Remark 15

One has
t = 0

∏
i=0

ti = 0 · 1 · 10 · 1001 · 10010110 · · ·
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Limits of Sequences

The Mephisto–Waltz word mw generalizes this construction, since it can
be defined as the limit of the sequence of words mw0 = 0 and
mwn = mwn−1mwn−1mwn−1 for every n > 0. So, mw1 = 001,
mw2 = 001001110, mw3 = 001001110001001110110110001, etc.

Another possible generalization consists in considering the sequence of
words defined by tmm0 = 0 and tmmn = tmmn−1tmmn−1tmmn−1 for
every n > 0. So, tmm1 = 011, tmm2 = 011100100, etc. The limit of
this sequence is the Thue–Morse–Morse word

tmm = 0111001001000110111000110111000110110111001 · · ·

Using the reversal instead of the binary complement, we can define the
sequence of words x0 = 01 and xn = xn−1xn−1x̃n−1 for every n > 0,
whose limit is the Stewart–Thue–Morse word

stm = 0101100101100110100101100101100110100101100 · · ·
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Limits of Sequences

The paperfolding word p is the limit of the sequence of words pn defined
by p0 = 0 and pn = pn−10p̃n−1 for every n > 0, where p̃k is the reversal
of the binary complement of pk.

Hence, the first few values of the sequence are: p1 = 0 · 0 · 1,
p2 = 001 · 0 · 011, p3 = 0010011 · 0 · 0011011, etc.

Indeed, passing from pn to pn+1 describes what happens by folding one
more time the sheet of paper along the same direction and then
unfolding it.
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Limits of Sequences

Consider now the sequence of words defined by f1 = 1, f2 = 0 and
fn = fn−1fn−2 for n > 2.

The limit of the sequence fn is the Fibonacci word f .

The words of the sequence (fn) are called Fibonacci finite words.

Indeed, the sequence of the lengths of the Fibonacci finite words is the
sequence Fn of the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, . . ., defined by
F1 = F2 = 1 and, for every n > 2, Fn = Fn−1 + Fn−2.

f1 = 1

f2 = 0

f3 = 01

f4 = 010

f5 = 01001

f6 = 01001010

f7 = 0100101001001
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Limits of Sequences

A generalization of the Fibonacci word is the Tribonacci word.

Recall that the sequence of Tribonacci numbers Tn is defined by T1 = 1,
T2 = 2, T3 = 4 and for every n > 3, Tn = Tn−1 + Tn−2 + Tn−3. The
first few values of the sequence Tn are 1, 2, 4, 7, 13, 24, 44, . . .

Consider now the sequence of words defined by tr1 = 0, tr2 = 01,
tr3 = 0102 and for n > 3, trn = tn−1trn−2trn−3. The limit for n that
goes to infinity of the sequence trn is the Tribonacci word

tr = 0102010010201010201001020102010010201010201001020100102 · · ·

As it is easy to guess, the sequence of lengths of the words trn is the
sequence of Tribonacci numbers.
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Limits of Sequences

The Pell word

pl = 001001000100100010010010001001000100100100010010001001000 · · ·

is defined as the limit of the sequence of words pl0 = 0, pl1 = 001 and
pln = pln−1pln−1pln−2 for every n > 1.

So, pl2 = 001 · 001 · 0, pl3 = 0010010 · 0010010 · 001, etc.

It is a word analogue of Pell numbers, defined by P0 = 0, P1 = 1 and
Pn = 2Pn−1 + Pn−2 for each n > 1.

The first few Pell numbers are: 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, . . .

The sequence of lengths of the words pln is the sequence of consecutive
sums of Pell numbers.
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Limits of Sequences

The period-doubling word

d = 0100010101000100010001010100010101000101010001000100010 · · ·

is the limit of the sequence of words dn defined by d0 = 0 and
dn+1 = dn d

′
n for every n > 0, where d′n is the word obtained from dn by

changing the last letter.

The first few values of the sequence dn are d1 = 01, d2 = 0100,
d3 = 01000101, etc.
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Limits of Sequences

The Sierpiński word

s = 0101110101111111110101110101111111111111111111111111110 · · ·

is the limit of the sequence of words defined by s0 = 0 and
sn+1 = sn13

n

sn for n ≥ 1.

The von Neumann word

v = 0010011001001110010011001001111001001100100111001001100 · · ·

is the limit of the sequence of words defined by v0 = 0 and
vn+1 = vn1n−1vn for n ≥ 1.
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Limits of Sequences

The Chacon word

c = 0010001010010001000101001010010001010010001000101001000 · · ·

is the limit of the sequence of words defined by c0 = 0 and for every
n > 0, cn = cn−1cn−11cn−1.

c0 = 0

c1 = 0010

c2 = 0010001010010

c3 = 0010001010010001000101001010010001010010
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Morphisms

The rules used for producing an infinite word as the limit of a sequence
of finite words that we described in the previous section are of different
types and do not follow a well-defined scheme.

For example, it is not clear what kind of transformations can be used for
generating the next word in the sequence.

From an algebraic point of view, a more natural approach consists in
defining infinite words using morphisms.
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Morphisms

Definition 16

Given two alphabets Σ and ∆, a morphism is a map µ from Σ∗ to ∆∗
such that µ(uv) = µ(u)µ(v) for any words u and v. When ∆ = Σ, we
say that µ is an endomorphism of Σ∗.

We restrict our attention to non-erasing morphisms (i.e., such that
µ(a) 6= ε, for every a ∈ Σ).

By definition, a morphism can be described by just specifying the images
of the letters of Σ. The domain of a morphism can be easily extended to
infinite words.

Remark 17

A morphism injective on Σ∗ is a (variable length) code.
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Morphisms

A morphism is called uniform if the images of the letters have the same
length k, also called the length of the uniform morphism.

A coding is a morphism of length 1, i.e., a mapping of letters (not
necessarily injective), i.e., a partition of the alphabet.
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Morphisms

Definition 18

A morphism µ such that there exists a letter a for which µ(a) is a word
starting with a and limn→∞ |µn(a)| = +∞ is called prolongable on a. If
µ is non-erasing and prolongable on a, we can iterate it to obtain a fixed
point of µ, that is the infinite word x = limn→∞ µn(a) such that
x = µ(x). Such an infinite word is called a pure morphic word.

Definition 19

A morphism µ is irreducible if for every pair of letters a, b in Σ, there
exists a positive integer k such that the letter a occurs in µk(b).

A morphism µ is primitive if it is irreducible and aperiodic, i.e., there
exists a positive integer k such that, for every pair of letters a, b in Σ, the
letter a occurs in µk(b)a.

aAn example of non-primitive irreducible morphism is 0 7→ 1, 1 7→ 0.
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Morphisms

For example, the (primitive uniform) morphism

τ : 0 7→ 01, 1 7→ 10,

called the Thue–Morse morphism, is prolongable both on 0 and on 1.
The fixed point starting with 0 of τ is the Thue–Morse word t.

Indeed, τ(0) = 01, τ2(0) = τ(τ(0)) = 0110, τ3(0) = 01101001, etc. so
that the sequence 0, τ(0), τ2(0), etc. is the sequence of Thue–Morse
finite words ti.

The fixed point starting with 1 of τ is the binary complement
t = 1001011001101001 · · · of the Thue–Morse word.
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Morphisms

Remark 20

Let µ be a morphism prolongable on letter a and let µ(a) = aw. Then its
fixed point x starting with a will be equal to

x = a · w · µ(w) · µ2(w) · µ3(w) · · ·

For example, the Thue–Morse word t can be obtained by

t = 0 · 1 · τ(1) · τ2(1) · τ3(1) · · · = 0 · 1 · 10 · 1001 · 10010110 · · ·

which is the factorization presented in Remark 15.

We call this factorization the natural factorization of the fixed point of µ
starting with a.
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Morphisms

The Mephisto–Waltz word mw is the fixed point starting with 0 of the
(primitive uniform) morphism 0 7→ 001, 1 7→ 110.

The Thue–Morse–Morse word tmm is the fixed point starting with 0 of
the (primitive uniform) morphism 0 7→ 011, 1 7→ 100.

The ternary Thue–Morse word t̂ is the fixed point starting with 0 of the
(primitive uniform) morphism

τ̂ : 0 7→ 01, 1 7→ 12, 2 7→ 20

The generalized Thue–Morse word tk is the fixed point starting with 0 of
the (primitive uniform) morphism

τk : 0 7→ 01 · · · (k−1), 1 7→ 12 · · · (k−1)0, . . . , (k−1) 7→ (k−1)0 · · · (k−2)
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Morphisms

The fixed point of the (primitive) morphism

ϕ : 0 7→ 01, 1 7→ 0

is the Fibonacci word f .

Indeed, ϕ(0) = 01, ϕ2(0) = ϕ(ϕ(0)) = 010, ϕ3(0) = 01001, etc. so that
the sequence 1, 0, ϕ(0), ϕ2(0), etc. is the sequence of Fibonacci finite
words fi.

The Tribonacci word tr is the fixed point of the (primitive) morphism

0 7→ 01, 1 7→ 02, 2 7→ 0

More generally, for every m > 1, the (primitive) morphism

0 7→ 01, 1 7→ 02, . . . , (m− 2) 7→ 0(m− 1), (m− 1) 7→ 0

generates the so-called m-bonacci word.
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Morphisms

The Pell word

pl = 00100100010010001001001000100100010010010001001000100 · · ·

is the fixed point of the (primitive) morphism

π = 0 7→ 001, 1 7→ 0

The period-doubling word

d = 01000101010001000100010101000101010001010100010001000 · · ·

is the fixed point of the (primitive uniform) morphism

δ : 0 7→ 01, 1 7→ 00
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Morphisms

The word

lnd3 = 12112212112112212212112212112112212112 · · ·

(sequence of the last nonzero digits in the ternary representation of n) is
the fixed point of the (primitive uniform) morphism

1 7→ 121, 2 7→ 122

More generally, for any k ≥ 3, lndk is the fixed point of the (primitive
uniform) morphism

1 7→ 12 · · · k1, 2 7→ 12 · · · k2, . . . , k 7→ 12 · · · kk

Remark 21

Taking the word lnd4 = 12311232123312311231123212331232123 · · ·
modulo 2, one obtains the word d, the binary complement of the
period-doubling word.
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Morphisms

Remark 22

Every periodic infinite word is pure morphic.

Every ultimately periodic infinite word is morphic, but may not be pure
morphic, as for example the word 001ω, which cannot be generated by a
morphsim.

On the other hand, it is not always easy to decide if a pure morphic word
is (ultimately) periodic. An example of ultimately periodic pure morphic
word is the fixed point of the morphism 0 7→ 012, 1 7→ 2, 2 7→ 1.

The same pure morphic word can be generated by different morphisms.
For example, composing a morphism with itself gives a morphism
generating the same word.

As another example, the periodic word 0ω can be generated by 0 7→ 00,
1 7→ w, for any word w, starting from 0, or by 0 7→ 0, 1 7→ 01, starting
from 1.

Gabriele Fici Combinatorics on Words



Morphisms

An example of an aperiodic word that is not pure morphic is the twisted
Thue–Morse word tt = 010011010010110 · · · .

Nevertheless, it is a morphic word, meaning that it is the image of a pure
morphic word under a coding.

Indeed, it is obtained by applying to the word

012314212312142314212314231214212312142314212312142123142312 · · ·

fixed point of the uniform morphism

0 7→ 01, 1 7→ 23, 2 7→ 14, 3 7→ 21, 4 7→ 12

the coding 0, 2, 3 7→ 0; 1, 4 7→ 1.
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Morphisms

The twisted Thue–Morse word verifies the equation x = 010τ2(x)
(actually, it is the only infinite word verifying this equation), and also the
equation x = 0τ(x) = 0τ ′(x), where τ ′ is the twisted Thue–Morse
morphism 0 7→ 10, 1 7→ 01; moreover, we have

tt = 0τ(1)τ2(0)τ3(1)τ4(0) · · · = 0 · 10 · 0110 · 10010110 · · ·

Equivalently,

tt =
∏
i=0

titi+1 = (0 · 10) · (0110 · 10010110) · · ·
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Morphisms

Another example of an aperiodic word that is morphic but not pure
morphic is the paperfolding word p. Indeed, it is obtained by applying to
the word

p′ = 012103210123032101210323012303210121032101230323012103 · · ·

fixed point of the uniform morphism 0 7→ 01, 1 7→ 21, 2 7→ 03, 3 7→ 23,
the coding 0, 1 7→ 0; 2, 3 7→ 1.

The paperfolding word can also be obtained starting from 00 and
applying the 2-letter substitution

00 7→ 0010

10 7→ 0110

01 7→ 0011

11 7→ 0111

that is, ab 7→ 0a1b, for every a, b ∈ Σ2.
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Morphisms

The Rudin–Shapiro word

r = 000100100001110100010010111000100001001000011101111011 · · ·

is also morphic but not pure morphic. It can be obtained by applying to
the word

r′ = 0102013101023202010201313231013101020131010232023231320 · · ·

fixed point of the uniform morphism 0 7→ 01, 1 7→ 02, 2 7→ 31, 3 7→ 32,
the coding 0, 1 7→ 0; 2, 3 7→ 1.

The Rudin–Shapiro word can also be obtained starting from 00 and
applying the 2-letter substitution

00 7→ 0001

01 7→ 0010

10 7→ 1101

11 7→ 1110
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Morphisms

Remark 23

A celebrated theorem of Cobham states that a word is q-automatic if and
only if it is obtained by applying a coding to a fixed point of a q-uniform
morphism.

However, it must be noticed that a q-automatic word may also be
obtained as a fixed point of a non-uniform morphism (and without
coding). This is the case, for example, of the word

vtm = 210201210120210201202101210201210120210 · · ·

(sometimes called Variant of Thue–Morse) fixed point of the morphism
0 7→ 1, 1 7→ 20, 2 7→ 210. It is 2-automatic, since it can be obtained
from the fixed point of 0 7→ 12, 1 7→ 13, 2 7→ 20, 3 7→ 21 by applying
the coding 0, 3 7→ 1; 1 7→ 2, 2 7→ 0.
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Morphisms

A pure morphic word may not be recurrent, for example the fixed point
of the morphism 0 7→ 01, 1 7→ 1 is 01ω. But even if it is recurrent, it
may not be uniformly recurrent.

An example is the Sierpiński word

s = 010111010111111111010111010 · · ·

which is the fixed point of the (non-primitive) uniform morphism:
0 7→ 010, 1 7→ 111.

The same holds for the von Neumann word

v = 0010011001001110010011001001111 · · ·

fixed point of the (non-primitive) morphism 0 7→ 001, 1 7→ 1.
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Morphisms

However, if the morphism is primitive, then each of its fixed points is
uniformly recurrent.

Indeed, let x be the fixed point starting with 0 of a primitive morphism
µ. Let us prove that x is uniformly recurrent. Let w be a factor of x.
Then w is a factor of some µn(0). Since µ is primitive, 0 occurs in µk(a)
for every letter a. Thus w appears in every µnk(a), hence it appears
infinitely often with bounded gaps.

Actually, Durand proved a stronger result:

Theorem 24 (Durand, 1998)

Every fixed point of a primitive morphism is linearly recurrent.
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Morphisms

On the other hand, even a fixed point of a non-primitive morphism can
be uniformly recurrent. An example is the Chacon word

c = 0010001010010001000101001010010001010010001000101001000 · · ·

which is the fixed point of the non-primitive morphism 0 7→ 0010, 1 7→ 1.

Finally, the Oldenburger–Kolakoski word k is not pure morphic, but can
be obtained starting from 22 and applying the 2-letter substitution

22 7→ 2211

21 7→ 221

12 7→ 211

11 7→ 21

It is an open question whether the Oldenburger–Kolakoski word is
morphic.
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Morphisms

word symbol morphism primitive uniform

Thue–Morse t 0 7→ 01, 1 7→ 10 yes yes

Mephisto–Waltz mw 0 7→ 001, 1 7→ 110 yes yes

Thue–Morse–Morse tmm 0 7→ 011, 1 7→ 100 yes yes

ternary Thue–Morse t̂ 0 7→ 01, 1 7→ 12, 2 7→ 20 yes yes

period-doubling d 0 7→ 01, 1 7→ 00 yes yes

last nonzero digit lnd3 1 7→ 121, 2 7→ 122 yes yes

Variant of Thue–Morse vtm 0 7→ 1, 1 7→ 20, 2 7→ 210 yes no

Fibonacci f 0 7→ 01, 1 7→ 0 yes no

Tribonacci tr 0 7→ 01, 1 7→ 02, 2 7→ 0 yes no

Pell pl 0 7→ 001, 1 7→ 0 yes no

Sierpiński s 0 7→ 010, 1 7→ 111 no yes

Chacon c 0 7→ 0010, 1 7→ 1 no no

von Neumann v 0 7→ 001, 1 7→ 1 no no

Table: Table of the morphisms whose fixed points are discussed in this chapter.
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Perron–Frobenius Theory

The Parikh vector (or composition vector, or abelianization map) of a
word w over Σk is the vector P (w) = (|w|0, |w|1, . . . , |w|k−1), whose ith
entry is the frequency of the letter i in w.

With each morphism one can associate the matrix whose columns are the
Parikh vectors of the images of the letters, called the incidence matrix of
the morphism.

For example, the incidence matrix of the Fibonacci morphism

ϕ : 0 7→ 01, 1 7→ 0 is the matrix Mϕ =

(
1 1
1 0

)
.
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Perron–Frobenius Theory

Remark 25

For every word w and every n ≥ 1, one has

P (µn(w)) = Mn
µP (w).

As a consequence, Mµn = Mn
µ .

For example, the word w = 01001 has Parikh vector (3, 2). If we apply to
w the Fibonacci morphism ϕ, we get ϕ(w) = 01001010, whose Parikh

vector is

(
1 1
1 0

)
(3, 2) = (5, 3).
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Perron–Frobenius Theory

Definition 26

A morphism µ is primitive if and only if its incidence matrix Mµ is
primitive, i.e., there exists a positive integer d such that all the entries of
Md
µ are greater than 0.

Such a d, called index of primitivity, is at most k2 − 2k + 2, where k is
the size of the alphanet.
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Perron–Frobenius Theory

The Perron–Frobenius theorem says that for any irreducible morphism
(hence a fortiori for any primitive morphism) µ with incidence matrix Mµ

there always exist an eigenvalue λ > 0 (called expansion number) and an
associated eigenvector u,

Mµu = λu,

such that λ is a Perron–Frobenius number, i.e., all other eigenvalues of
Mµ have modulus less than λ or, equivalently, λ is the radius of the
spectrum of Mµ and is a simple root of the characteristic polynomial of
Mµ.

For example, the characteristic polynomial of Mϕ =

(
1 1
1 0

)
is

|Mϕ − λI| =
∣∣∣∣1− λ 1

1 −λ

∣∣∣∣ = λ2 − λ− 1,

whose Perron–Frobenius eigenvalue is the golden ratio ϕ.
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Perron–Frobenius Theory

Moreover, the normalized eigenvector associated with the
Perron–Frobenius eigenvalue (normalized in such a way that the sum of
the components is equal to 1) gives the frequencies of the letters in the
fixed point of the morphism.

Indeed, the frequency of the generic letter a in the fixed point of µ
starting with 0 is given by

lim
n→∞

|µn(0)|a
|µn(0)|

.

For example, the normalized eigenvector of the Perron–Frobenius
eigenvalue ϕ for the incidence matrix Mϕ is
(1/ϕ, 1/ϕ2) = (ϕ− 1, 2− ϕ) ≈ (0.618, 0.382).

As a consequence, for fixed points of primitive morphisms the frequencies
of the letters always exist.
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Perron–Frobenius Theory

Proposition 27

Let x be a morphic (resp. an automatic) sequence. If the frequency of a
letter exists, then it is an algebraica (resp. a rational) number.

aAn algebraic number is a number that is a root of a non-zero polynomial in one
variable with integer (or, equivalently, rational) coefficients.
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Perron–Frobenius Theory

Remark 28

A useful method to obtain a good approximation of the normalized
Perron–Frobenius eigenvector is using the so-called power method. Let
Mµ be the k × k incidence matrix of the primitive morphism µ. Let
v = ( 1

k ,
1
k , . . . ,

1
k ). Then the normalized Perron–Frobenius eigenvector is

equal to the normalization of the vector limn→∞Mn
µ · v.

So, a good approximation of the frequencies of letters can be obtained by
choosing a sufficiently large value of n.

For example, M10
ϕ =

(
89 55
55 34

)
and M10

ϕ · (0.5, 0.5) = (72, 44.5), which,

divided by 72 + 44.5 = 116.5, gives (0.618026, 0.381974).

Notice that in general, for n ≥ 1, Mn
ϕ =

(
Fn+1 Fn
Fn Fn−1

)
.
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Perron–Frobenius Theory

Exercise 29

Do the same calculations for the Pell morphism π.

Show that for every n ≥ 1, Mn
π =

(
2 1
1 0

)n
=

(
Pn+1 Pn
Pn Pn−1

)
.
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Perron–Frobenius Theory

An algebraic integer λ > 1 is a Pisot number (or Pisot–Vijayaraghavan
number) if all its algebraic conjugates α other than λ itself satisfy
|α| < 1.

The key property of a Pisot number λ is that the distance from λn to the
nearest integer tends to zero as n tends to infinity.

Conversely, if λ is any algebraic number bigger than 1 with this property,
then λ must be a Pisot number; it is a conjecture of Pisot that no
transcendental number has this property.

Examples of Pisot numbers are the golden ratio (1 +
√

5)/2 and the
silver ratio 1 +

√
2.

Definition 30

A primitive morphism is called a Pisot morphism if its Perron–Frobenius
eigenvalue is a Pisot number.
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Abstract Numeration Systems

Let x = limn→∞ µn(a) be a fixed point of a morphism µ of
Σ = {a1, a2, . . . , aσ} prolongable on the letter a, and let n > 0 be the
maximum length of an image of a letter under µ.

We can associate with µ an automaton Aµ in the following way: The set
of states of Aµ is Σ, and for each letter ai ∈ Σ, letting
µ(ai) = ai0ai1 · · · ain , with aij ∈ Σ, we add the transitions (ai, j, aij ) for
every j (where a transition (qr, c, qs) is an edge from state qr to state qs
labeled by the letter c).

Remark 31

Notice that in this way the adjacency matrix of Aµ is equal to the
incidence matrix of µ.
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Abstract Numeration Systems

For example, let µ : 1 7→ 121, 2 7→ 122 be the morphism generating the
word lnd3 = 121122121 · · · .

Then Aµ has two states, labeled 1 and 2.

Since µ(1) = 121, we add the transitions (1, 0, 1), (1, 1, 2) and (1, 2, 1);
since µ(2) = 122, we add the transitions (2, 0, 1), (2, 1, 2) and (2, 2, 2).

1 2

0,2

1

0

1,2
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Abstract Numeration Systems

If we make the state associated with the letter a the initial state and all
states terminal, we get a DFA over the alphabet {0, 1, . . . , n− 1}.

This DFA is complete if and only if the morphism µ is uniform, otherwise
some transitions are not defined.

1start 2

0,2

1

0

1,2

Figure: The DFA associated with the morphism µ : 1 7→ 121, 2 7→ 122 starting
from letter 1.
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Abstract Numeration Systems

Let L be the language recognized by the DFA. Let L0 be the language
obtained from L after removing the words that start with 0.

Now, provided that we fix an order < on Σ = {a1, a2, . . . , aσ}, if we feed
Aµ with the words of L0 in genealogical order (i.e., first by length, then
lexicographically on equal-length words), we can build an infinite word by
writing, for the n-th word in L0, call it wn, the label of the state we
reach by reading wn on Aµ from the initial state, called the output of n.

Definition 32

The triple S = (L,Σ, <) is called the Abstract Numeration System
generated by µ and < w.r.t. the letter a. The word wn is the
S-representation of the natural number n.
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Abstract Numeration Systems

For example, the first few words in the ANS generated by
µ : 1 7→ 121, 2 7→ 122 with the order 1 < 2 w.r.t. the letter 1 are:
ε, 1, 2, 10, 11, 12, 20, 21, 22, 100, 101, 102, . . .

So that, for example, 100 is the S-representation of 9 and 102 is the
S-representation of 11.

If we feed the automaton with these words, in this order, we generate the
sequence 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, . . . which is the sequence of letters of the
fixed point of µ, i.e., the word lnd3.

1start 2

0,2

1

0

1,2

Figure: The DFA associated with the morphism µ : 1 7→ 121, 2 7→ 122 starting
from letter 1.
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Abstract Numeration Systems

Actually, if µ is prolongable on a, letting µ(a) = aw, we have that
feeding the automaton Aµ with all the words of L0 up to length ` (in
genealogical order), one gets precisely the sequence of letters of the word
a · w · µ(w) · · ·µ`−1(w), i.e., the natural factorization of limn→∞ µn(a).

For example, let µ : 0 7→ 01, 1 7→ 02, 2 7→ 0 be the morphism generating
the Tribonacci word tr. The words of length up to 4 of the associated
ANS (which are the S-representations of the first 13 natural numbers)
are: ε, 1, 10, 11, 100, 101, 110, 1000, 1001, 1010, 1011, 1100, 1101; the
associated outputs are: 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, and we have
0 · 1 · 02 · 010 · 010201 = 0 · 1 · µ(1) · µ2(1) · µ3(1), which is the prefix of
length 13 of the Tribonacci word.

0start 1 2

0

1

0

1

0

Figure: The DFA associated with the Tribonacci morphism
0 7→ 01, 1 7→ 02, 2 7→ 0.
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Abstract Numeration Systems

Finally, if we want to generate a generic morphic word, i.e., in addition to
the morphism µ we have a coding, we just rename the states of Aµ
accordingly with the coding.

For example, adding the coding χ : 0, 2 7→ a, 1 7→ b to the Tribonacci
morphism, we get the morphic word χ(µω(0)) = abaaabaabaaab · · · by
just renaming the labels of the automaton accordingly with the coding.

astart b a

0

1

0

1

0

Figure: The DFA associated with the Tribonacci morphism
0 7→ 01, 1 7→ 02, 2 7→ 0 and the coding 0, 2 7→ a, 1 7→ b.
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Abstract Numeration Systems

Remark 33

If the morphism µ is uniform of length k, the associated ANS is the
standard base-k representation of natural numbers.

So we have an algorithm to construct the automaton associated with a
k-automatic word.

Remark 34

Notice that the same morphic word can be obtained from different ANS.

Exercise 35

Build the automaton for the other morphisms shown in this lecture.
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Rich Morphisms

Definition 36

A morphism is rich if it maps finite rich words to rich words.

Clearly, since letters, i.e., factors of length 1, are rich, every fixed point of
a rich morphism is an infinite rich word.

An example of rich morphism is the Fibonacci morphism 0 7→ 01, 1 7→ 0.

Another example of a rich morphism is the von Neumann morphism
0 7→ 001, 1 7→ 1.
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Lyndon Morphisms

Definition 37

Let Σ be a totally ordered alphabet. A morphism µ is order-preserving
(or, more precisely, order-preserving on finite words) if for every u, v ∈ Σ∗

such that u ≤ v, µ(u) ≤ µ(v).

An example of order-preserving morphism is the Thue–Morse morphism
0 7→ 01, 1 7→ 10.
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Lyndon Morphisms

In the binary case, we have the following characterization.

Theorem 38

Let µ be an endomorphism of Σ2. Then µ is order-preserving if and only
if µ(01) ≤ µ(1).

So for example the Fibonacci morphism ϕ : 0 7→ 01, 1 7→ 0 is not
order-preserving, since ϕ(01) = 010 is not smaller than ϕ(1) = 0.
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Lyndon Morphisms

Definition 39

A (finite or infinite) word is called a Lyndon word if it is lexicographically
smaller than all its proper suffixes.

In particular, finite Lyndon words are primitive words.

Definition 40

A morphism µ is a Lyndon morphism if it maps Lyndon words to Lyndon
words.

The Thue–Morse morphism is not a Lyndon morphism. For example, it
maps the Lyndon word 1 to the word 10, which is not Lyndon (or also 01
to 0110).
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Lyndon Morphisms

Theorem 41 (Richomme, 2003)

Let Σ be a totally ordered alphabet of size at least 2. An endomorphism
µ of Σ∗ is Lyndon if and only if µ is order-preserving and µ(a) is a
Lyndon word for every a ∈ Σ.

In the binary case, we have the following characterization.

Proposition 42

Let µ be an endomorphism of Σ2. Then µ is a Lyndon morphism if and
only if µ(0) and µ(1) are Lyndon words and µ(0) ≤ µ(1).
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Lyndon Morphisms

We now deal with the question whether a morphism generates an infinite
Lyndon word.

If µ is a Lyndon morphism prolongable on the letter a, where a is the
smallest letter of Σ, then its fixed point limn→∞ µn(a) is an infinite
Lyndon word, since µn(a) is a Lyndon word for every n.

This is, however, not a necessary condition: the morphism 0 7→ 010,
1 7→ 11 is not Lyndon (since 010 is not a Lyndon word) but generates an
infinite Lyndon word.

Lemma 43

Let µ be an endomorphism of Σ2 prolongable on 0. If µ generates an
infinite Lyndon word, then µ is order-preserving.

The converse of the previous statement does not hold true, in general.
For example, the Thue–Morse–Morse morphism is order-preserving, but
its fixed point is not an infinite Lyndon word.
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Lyndon Morphisms

Theorem 44 (Richomme, Séébold, 2021)

Let µ be an endomorphism of Σ2 prolongable on 0. Then µ generates an
infinite Lyndon word if and only if all the following conditions hold:

1 µ is order-preserving;

2 the infinite word generated by µ is aperiodic;

3 µ3(0) is a prefix of a Lyndon word.

The necessity of the second condition is witnessed by 0 7→ 010, 1 7→ 101,
which generates the periodic word (01)ω.

The necessity of the third condition is witnessed by the Fibonacci
morphism ϕ : 0 7→ 01, 1 7→ 0. Indeed, ϕ2(0) = 010 is a prefix of a
Lyndon word, but ϕ3(0) = 01001 is not. In fact, the Fibonacci word f is
not an infinite Lyndon word.
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Toeplitz Words

The paperfolding word p is actually a regular instance of a more general
construction, called Toeplitz construction, which is another way to
construct infinite words.

A (general) paperfolding word can be seen as the sequence of ridges and
valleys obtained by unfolding a sheet of paper which has been folded
infinitely many times.

At each step, one can fold the paper in two different ways, thus
generating uncountably many sequences.

The regular paperfolding word p = 001001100011011 · · · is obtained by
folding always along the same direction.
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Toeplitz Words

Even if paperfolding words are not fixed points of primitive morphisms, so
that we cannot apply Theorem 24, they are all linearly recurrent:

Theorem 45

All paperfolding words are linearly recurrent. More specifically, for any
k ≥ 0, any factor of length at least 44k contains all the factors of length
k.

Gabriele Fici Combinatorics on Words



Toeplitz Words

Let us define P1 = 0?1? and P2 = 1?0?.

A paperfolding word can be obtained starting from T 0 =?ω and defining
for n > 0, the word Tn as the word obtained from Tn−1 by replacing
sequentially all occurrences of ? by the letters of Pω1 or Pω2 , depending
on the sequence of instructions b = b0b1 · · · , where bi ∈ {P1, P2}.

At the limit for n that goes to infinity, one obtains the paperfolding word
associated with the sequence b.
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Toeplitz Words

For example, if b = Pω1 one obtains the regular paperfolding word p. The
first few iterations of the Toeplitz construction of the regular
paperfolding word p are:

0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? · · ·
0 0 1 ? 0 1 1 ? 0 0 1 ? 0 1 1 ? · · ·
0 0 1 0 0 1 1 ? 0 0 1 1 0 1 1 ? · · ·
0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 ? · · ·
0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 0 · · ·
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Toeplitz Words

As another example, if b = (P1P2)ω one obtains the alternate
paperfolding word

a = 011000110111001001100010011100110 · · ·

0 ? 1 ? 0 ? 1 ? 0 ? 1 ? 0 ? 1 ? · · ·
0 1 1 ? 0 0 1 ? 0 1 1 ? 0 0 1 ? · · ·
0 1 1 0 0 0 1 ? 0 1 1 1 0 0 1 ? · · ·
0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 ? · · ·
0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 · · ·
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Toeplitz Words

Remark 46

There are uncountably many paperfolding words, only a countable subset
of them is q-automatic.

As a consequence of Cobham’s theorem (see Remark 23), a paperfolding
word is q-automatic if and only if its sequence of instructions is
ultimately periodic.
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Toeplitz Words

More generally, a Toeplitz word is defined in the same way but taking as
sequence of instructions any sequence (Pn) of words over Σ ∪ {?}, called
partial words.

Starting from T 0 =?ω, one defines, for every i > 0, T i as the word
obtained from T i−1 by replacing sequentially all occurrences of ? by the
letters of the infinite periodic word (Pi)

ω.

If there are infinitely many values of n such that Pi does not begin with
?, the associated Toeplitz word T = limi→∞ T i is a word over Σ.

We suppose the partial words Pi to be of minimal length (i.e., primitive).
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Toeplitz Words

A special case is when the sequence (Pi) is constant, that is, always
equal to a partial word P . We call these Toeplitz words simple and say
that they are generated by the partial word P .

Note that this is also the case of a periodic sequence of partial words,
which can be reduced to a single partial word.

For example, the regular paperfolding word is generated by P = 0?1?, so
it is simple.

The alternate paperfolding word is also simple, since it can be generated
by the partial word P = 011?001?.

Notice that every purely periodic word is a simple Toeplitz word.
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Toeplitz Words

The period-doubling word d is generated by P = 010?:

0 1 0 ? 0 1 0 ? 0 1 0 ? 0 1 0 ? · · ·
0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 ? · · ·

The word

lnd3 = 12112212112112212212112212112112212112 · · ·

fixed point of the morphism 1 7→ 121, 2 7→ 122, is also a simple Toeplitz
word, generated by P = 12?:

1 2 ? 1 2 ? 1 2 ? 1 2 ? 1 2 ? 1 · · ·
1 2 1 1 2 2 1 2 ? 1 2 1 1 2 2 1 · · ·
1 2 1 1 2 2 1 2 1 1 2 1 1 2 2 1 · · ·
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Toeplitz Words

The following result is a direct consequence of the definition:

Theorem 47

Every simple Toeplitz word is uniformly recurrent.

We have the following immediate characterization of simple Toeplitz
words:

Theorem 48

An infinite word x is a simple Toeplitz word if and only if for every n there
exists p such that x is constant over the indices equal to n modulo p.

As a consequence, the Fibonacci word f , the Thue–Morse word t and the
Rudin–Shapiro word r are not simple Toeplitz words, by known properties
of the arithmetic progressions in these words.
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Toeplitz Words

Simple Toeplitz words are all automatic words by the aforementioned
result of Cobham. More specifically, we have:

Theorem 49 (Cassaigne, Karhumäki, 1997)

Let w be a simple Toeplitz word, generated by the partial word P , and
let q be the number of ? occurring in P . Then:

1 If q = 1, w is a fixed point of a uniform morphism of length q;

2 If q divides |P |, w is obtained from a fixed point of a uniform
morphism of length q by applying a coding.
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Toeplitz Words

An interesting class of Toeplitz words is that of Stewart words. They are
Toeplitz words generated by any sequence of patterns in P, where P is
the set of patterns of length 3 that are permutations of {0, 1, ?}, called
Stewart patterns:

a = 01?; b = 10?;

c = 0?1; d = 1?0;

e =?01; f =?10.

For example:

The pattern sequence aω = aaa · · · specifies the word

010011010010011011010011010010011010 · · · ,

the fixed point of the morphism 0 7→ 010, 1 7→ 011, which is a
recoding over {0, 1} of the word lnd3.
The pattern sequence cω = ccc · · · specifies the so-called Stewart
choral word

00100101100100101100101101100100101 · · · ,

the fixed point of the morphism 0 7→ 001, 1 7→ 011.
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The pattern sequence (ab)
ω

= ababab · · · specifies the so-called
Sierpiński gasket word

01101001001101001101101001101 · · · ,

the fixed point of the morphism 0 7→ 011, 1 7→ 010.

The word generated by eω and in which the first letter is set to 01

0010011010010011011010011010 · · ·

has been considered by Ferenczi (so we call it Ferenczi word), who
showed that applying to it the morphism 0 7→ 0, 1 7→ 10, one obtains
the Chacon word.

1In the case that a Stewart word is specified by an infinite word with a suffix in
{e, f}ω , and only in this case, the limit of the Toeplitz construction is an infinite word
containing a single occurrence of ?. In this special case, there are two distinct Stewart
words, obtained by replacing this single occurrence of ? with 0 and 1, respectively.
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Toeplitz Words

Remark 50

The Stewart–Thue–Morse word

stm = 0101100101100110100101100101100110100101100 · · ·

is the image, under the Thue–Morse morphism τ : 0 7→ 01, 1 7→ 10, of
the Stewart choral word

00100101100100101100101101100100101 · · ·
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Toeplitz Words

Theorem 51

The only possible palindromes occurring in the Stewart words are:

{ε, 0, 1, ?, 00, 11, 010, 101, 0110, 1001, 00100,

11011, 010010, 101101, 0110110, 1001001}.

Furthermore, each such palindrome occurs in the length-81 word
specified by any Stewart pattern sequence of length 4.

Theorem 52

A Stewart word is 3-automatic if and only if its sequence of patterns is
ultimately periodic.
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