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Words

An alphabet Σ is a set of symbols, whose elements are called letters.

Definition 1

Given an alphabet Σ, a word w over Σ is a finite sequence of letters from
Σ. A word over an alphabet of size 2 is called a binary word.

The length |w| of a word w is the number of its letters. The unique word
of length 0 is called the empty word and is denoted by ε.

We let Σ∗ denote the set of all words of any length over Σ and Σ+ the
set of all words of positive length over Σ, that is, Σ+ = Σ∗ \ {ε}.

Finally, for a given n ≥ 0, Σn denotes the set of all words over Σ of
length n.
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Words

With wz we denote the concatenation of words w and z.

With wk we denote the concatenation of k copies of the word w.

Notice that w0 = ε.

Indeed, equipped with the operation of concatenation, the set Σ+ is a
free semigroup, while the set Σ∗ is a free monoid.

Remark 2

Over an alphabet of cardinality k, there are kn possible words of length
n, for every n ≥ 0.
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Orders

With Σk we denote the ordered alphabet {0, 1, . . . , k − 1}.

The order on Σk induces the lexicographic order ≤ on the set of words
Σ∗k, defined by x ≤ y if and only if x is a prefix of y or in the first
position in which x and y disagree, the letter occurring in x is smaller
than the letter occurring in y.

Notice that, although ≤ is a total order, it is not a well-order, in the
sense that there exist infinite sets of words without a least element.

For example, if we start from the word 0, the next word in lexicographic
order will be 00, then 000, etc. So, listing all words in lexicographic
order, there are infinitely many words before we encounter the word 1.
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Orders

For this reason, we will also use another order, ≤s, called genealogical (or
shortlex, or radix, or military) order, defined by: x ≤s y if the length of x
is smaller than the length of y1 or, if |x| = |y|, x < y.

The first few words over Σ2 in genealogical order are:

ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100 . . .

Notice that if we take the subset of words that start with 1, we get the
sequence of binary representations of positive integers:

1, 10, 11, 100, 101, 110, 111, 1000, . . .

1Notice that without any other conditions this would not be a total order.
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Factors, Borders and Powers

Definition 3

Given a finite or infinite word x, we say that a word v is a factor of x if
x = uvz for some words u and z.

We say that v is a prefix (resp., a suffix) of x if u = ε (resp., z = ε).

We let Fact(x), Pref(x), Suff(x) denote, respectively, the set of factors,
prefixes, suffixes of the word x.

We implicitly assume that the empty word ε is a prefix, a suffix and a
factor of any word. So, a word w of length n has exactly n+ 1 prefixes
and n+ 1 suffixes. It has O(n2) distinct factors.

A word of length n in which each letter occurs exactly once has Θ(n2)
distinct factors.
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Factors, Borders and Powers

A binary word of length n has at most 2k+1 − 1 +
(
n−k+1

2

)
distinct

factors, where k is the unique integer such that
2k + k − 1 ≤ n ≤ 2k+1 + k.

Equivalently, the maximum number of distinct factors of a binary word of
length n is

n∑
i=0

min(2i, n− i+ 1)

Gabriele Fici Combinatorics on Words



Factors, Borders and Powers

Definition 4

We say that a word v is a border of a finite word x if v is both a prefix
and suffix of x. A word v is unbordered if it has only trivial borders (ε
and v).

Example 5

Let x = 0101010. The borders of x are ε, 0, 010, 01010 and x. The
word x = 00100101 is unbordered.
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Factors, Borders and Powers

Notice that if v is a border of a word x and u is a border of v, then u is a
border of x.

It is easy to see that a bordered word x has at least one nonempty border
of length smaller than or equal to |x|/2.

That is, if x is bordered, then there exist v, y, with v nonempty, such
that x = vyv.

In general, if x is a border of a word w, we can write w = yx = xz, for
some words y, z of the same length. If z = y, we are in a very special
situation: the word w can be written both as xy or yx.
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Factors, Borders and Powers

The following theorem is fundamental.

Theorem 6 (Lyndon, Schützenberger, 1962)

Let x, y ∈ Σ+. Then the following conditions are equivalent:

1 xy = yx (x and y commute);

2 There exists z ∈ Σ+ such that x = zr and y = zs for some integers
r and s;

Notice that the word z in the previous theorem must have a length that
divides both |x| and |y|. Actually, z can be chosen of minimal length,
that is, of length gcd(|x|, |y|).
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Factors, Borders and Powers

The following theorem is a generalization of the Lyndon and
Schützenberger theorem.

Theorem 7

The equation
wi = xjyk

w, x, y ∈ Σ+, i, j, k ≥ 2, holds if and only if there exists z ∈ Σ+ such
that w = zl, x = zm, y = zn, li = mj + nk.
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Factors, Borders and Powers

Definition 8

Two words x and y are conjugates if there exists v such that xv = vy.

This definition of conjugacy comes from the fact that Σ∗ is a monoid
with respect the operation of concatenation, but not a group. Therefore,
one cannot define the conjugacy in the classical way y = v−1xv, but the
definition is still possible by “multiplying” both members to the left by v,
thus obtaining vy = xv.

Conjugacy is an equivalence relation. An equivalence class of words with
respect to the conjugacy relation is sometimes called a necklace, or a
circular word.

For example, the conjugacy class of 0101 is {0101, 1010}, while the
conjugacy class of 010 is {001, 010, 100}.
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Factors, Borders and Powers

Definition 9

A nonempty word x is called primitive if the cardinality of its conjugacy
class is equal to its length |x|; that is, if the words in the conjugacy class
of x are all distinct.

By definition, if a word is primitive, then every its conjugate is primitive.

Remark 10

An unbordered word is primitive. Conversely, a primitive word may have a
nontrivial border, e.g., x = 01001.
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Factors, Borders and Powers

The following result expresses the conjugacy of two words à la Lyndon
and Schützenberger.

Lemma 11

Let x, y be nonempty words such that x 6= y and xv = vy for some word
v (that is, x and y are conjugates). Then, there exists a unique pair of
words (p, q) and a unique integer m > 0 such that pq is primitive and

x = (pq)m, y = (qp)m, v ∈ (pq)∗p.

For example, let 0100 · 010 = 010 · 0010. We have that v = 010 is a
border of x = 0100 and y = 0010. Let p = 010 and q = 0. Then x = pq,
y = qp and v = (pq)0p.
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Factors, Borders and Powers

So, we have:

primitive ⇔ the equation xy = yx has only trivial solutions

unbordered ⇔ the equation xv = vy has only trivial solutions
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Factors, Borders and Powers

Proposition 12

A word is primitive if and only if it is conjugate to an unbordered word.

Proof.

If a word w is primitive, then its least conjugate in lexicographic order,
w′, is unbordered. Indeed, if w′ had a border then we could write
w′ = xyx, for some x, y, both nonempty (if y were empty w′ would not
be primitive). Now, x must be lexicographically smaller than y, for
otherwise the conjugate w′′ = yxx would be lexicographically smaller
than w′. But then the conjugate w′′′ = xxy is smaller than w′, against
the assumption that w′ is the least conjugate in its class.

Conversely, if a word w is not primitive, then there are two conjugates xy
and yx of w that coincide. Therefore, by Lyndon and Schützenberger,
w = zn, for some word z and n > 1. Hence, all conjugates of w have a
border.

As a corollary, any primitive word has at least one unbordered conjugate.
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Factors, Borders and Powers

Proposition 13

A word w is primitive if and only if it does not occur internally in ww
(that is, it appears only as a prefix and as a suffix in ww).

Thus, an efficient algorithm to check if a word w is primitive is to locate
the occurrences of w in ww.

Exercise 14

Prove Proposition 13.
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Factors, Borders and Powers

Definition 15

A word w of the form w = zn for a nonempty z and n > 1 (that is, a
word that is not primitive) is called an integer power, or simply a power.

Moreover, z can always be chosen to be primitive, and with this
assumption n is called the order of the power w and z is called the
primitive root of w.

Hence, sometimes, a primitive word is defined as a nonempty word w
such that if w = zn for some z, then n = 1.
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Factors, Borders and Powers

Remark 16

If p is a prime number, then a word of length p is either a power of a
single letter or it must be primitive, since w = zn implies that |z| must
divide |w|.

The previous remark can be used to give a very simple proof of the
famous Fermat’s Little Theorem.

Theorem 17 (Fermat’s Little Theorem)

Let p be a prime and k a positive integer. Then kp − k is a multiple of p.

Proof.

Since p is a prime, the kp − k words of length p over Σk that are not
powers of a single letter are grouped in conjugacy classes consisting of
primitive words, hence they all have cardinality equal to p.
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Factors, Borders and Powers

Theorem 18 (Shyr and Yu)

Let x, y be distinct primitive words. Then there exists at most one
non-primitive word of the form xnym, n,m ≥ 1. If x and y are also
unbordered, then every word of the form xnym, n,m ≥ 1, is primitive.

As a consequence of the previous theorem, if a word (of length at least 2)
can be written as the concatenation of two (distinct) nonempty
unbordered words, then it is primitive — this statement is easy to prove
by contraposition. The converse is not true in general; for example 00100
is primitive but cannot be written as the concatenation of two distinct
unbordered words.

On the other hand, every unbordered word (of length at least 2) can be
written as the concatenation of two (distinct) nonempty unbordered
words, as shown in the next proposition — however, observe that
0110 = 011 · 0 can be written as the concatenation of two distinct
nonempty unbordered words, yet it is not unbordered.
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Factors, Borders and Powers

Proposition 19

Let x be an unbordered word of length > 1. Let u be the longest proper
unbordered prefix (resp., suffix) of x and write x = uv (resp., x = vu).
Then v is unbordered.

Proof.

Let x be an unbordered word of length > 1, and let v be the longest
proper suffix of x that is unbordered. We prove that the prefix u of x
such that uv = x is also unbordered. Suppose by contradiction that u
has a nonempty border u′. We can write u = u′zu′ for some word z
(recall that any bordered word has a border whose length is no more than
half its length). Write x = u′zv̂. The word v̂ is a proper suffix of x and is
longer than v, so v̂ has a nonempty border v′. If |v′| ≤ |u′|, then v′ is a
prefix of u, hence of x, and is a suffix of v̂, hence of x, against the
hypothesis that x is unbordered. If |v′| > |u′|, then v′ = u′u′′ for some
nonempty u′′. But in this case u′′ is a prefix and a suffix of v, against the
hypothesis that v is unbordered. The other case is symmetric.
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Factors, Borders and Powers

Proposition 20 (Duval factorization)

Every word w can be written uniquely as a concatenation of unbordered
prefixes of w.

For example, if w = 011001110011, then the Duval factorization of w is
w = 01100111 · 0 · 011.

The Duval factorization can be computed from right to left by recursively
removing the shortest nonempty border of w.
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Factors, Borders and Powers

Recall that if f and g are arithmetic functions, the Dirichlet convolution
of f and g is defined as

f ∗ g =
∑
d|n

f(d)g
(n
d

)
=
∑
ab=n

f(a)g(b)

and ∗ is associative and commutative. The Möbius inversion formula says
that if g(n) =

∑
d|n f(d) then f = µ ∗ g, that is,

f(n) =
∑
d|n

µ(d)g
(n
d

)
where µ(n) is the Möbius function: µ(1) = 1, µ(n) = (−1)j if n is the
product of j distinct primes or 0 otherwise, i.e., if n is divisible by the
square of a prime number.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14
µ(n) 1 −1 −1 0 −1 1 −1 0 0 1 −1 0 −1 1

Table: The first few values of the Möbius function.

Gabriele Fici Combinatorics on Words



Factors, Borders and Powers

Proof.

For every n > 1 one has ∑
d|n

µ (d) = 0 (1)

that is, µ sums up to 0 on every set that is the set of divisors of an integer.
Indeed, µ(n) depends only on the set of primes dividing n and every set has an
equal number of odd- and even-cardinality subsets. Now,

(µ ∗ g)(n) =
∑
d|n

µ(d)g
(n
d

)
(by definition)

=
∑
d|n

µ(d)
∑

d′|(n/d)

f(d′) (by hypothesis)

=
∑
d′|n

µ(d′)
∑

d|(n/d′)

f(d) (d and d′ both range over all div.s of n)

=
∑
d′|n

f(d′)
∑

d|(n/d′)

µ(d) (by commutativity of Dirichlet convol.)

= f(n) (by 1 since the sum is 6= 0 only when d′ = n)
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Factors, Borders and Powers

Theorem 21

The number of primitive words of length n over Σk is

Pk(n) =
∑
d|n

µ(d)kn/d

Proof.

The number of words of length n is Sk(n) = kn and it is equal to∑
d|n Pk(d), where Pk(d) is the number of primitive words of length d.

By Möbius inversion formula, Pk(n) =
∑

d|n µ(d)Sk(n/d).

For example, let k = 2 and n = 4. The primitive binary words of length 4
are: 0001, 0010, 0011, 0100, 0110, 0111 and their binary complements
obtained exchanging 0s and 1s. So we have 12 words in total.

Applying the theorem, we have∑
d|n µ(d)kn/d = µ(1)24+µ(2)24/2+µ(4)24/4 = 1·16+(−1)·4+0·2 = 12.
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Factors, Borders and Powers

Remark 22

From the previous theorem, it follows that the number of conjugacy
classes of primitive words of length n over Σk is

Lk(n) =
Pk(n)

n
=

1

n

∑
d|n

µ(d)kn/d,

because each class contains n primitive words.
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Factors, Borders and Powers

The number of conjugacy classes of words (i.e., the number of necklaces)
of length n over Σk, instead, is

Nk(n) =
1

n

∑
d|n

ϕ(d)kn/d

where ϕ(n) is the Euler totient function, i.e., the function counting the
positive integers smaller than n and coprime with n. Indeed, it follows
from the definition of ϕ that

∑
l|d ϕ(l) = d (a number divides d if and

only if it divides a divisor of d), and, by Möbius inversion,

ϕ(d) =
∑
l|d

µ(l)
d

l

(continues)
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Factors, Borders and Powers

Now, since we can associate in a bijective way every word of length n
with its primitive root, we have Nk(n) =

∑
d|n Lk(d). Thus,

nNk(n) =
∑
d|n

nLk(d)

=
∑
d|n

n

d

∑
l|d

µ(l)kd/l

=
∑
d|n

kn/d
∑
l|d

µ(l)
d

l

=
∑
d|n

kn/dϕ(d)

where we used the commutativity of the Dirichlet convolution.
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Periods

An important tool to study and classify finite and infinite words is the
notion of period.

Definition 23

A word p is a word-period of a word w if p = ε or w is a prefix of a power
of p. Notice that any word p such that w is a prefix of p is a word-period
of w, so every word has at least one word-period.

The shortest nonempty word-period of w is called the fractional root of
w and is denoted by ρw.

For example, the word w = 0010010 has word periods
ε, 001, 001001, 0010010, etc.; its fractional root is ρw = 001.

Exercise 24

Show that a word p is a word-period of a word w if and only if w is a
prefix of pw.
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Periods

Very often, one is interested only in the length of a word-period. So, we
give the following

Definition 25

An integer |p| ≥ 0 is a period of a word w if the letters occurring in w at
positions i and j coincide whenever i = j mod |p|. Notice that any
integer |p| ≥ |w| is a period of w, so every word has at least one positive
period.

The minimum (or smallest) positive period of w is denoted by πw.

For example, the word w = 0010010 has periods 0, 3, 6, 7, etc.; its
minimum positive period is πw = 3.

Notice that if |p| is a period of w, then any multiple of |p| also is.
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Periods

Remark 26

If w has period |p|, then every factor of w has period |p| as well.

Another remark, due to de Luca and De Luca, is the following:

Lemma 27

Let w be a word. An integer |p| ≤ |w| is a period of w if and only if all
the factors of w of length |p| are conjugates.
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Periods

The notions of word-period and border are intimately related. Indeed, a
nonempty word w has a word-period p (with |p| < |w|) if and only if w
has a border of length |w| − |p|.

Equivalently, w has a period |p| shorter than its length if and only if w
has a border of length |w| − |p|.

We therefore have the following

Remark 28

A word w is unbordered if and only if its smallest positive period is |w|.

A word w is primitive if and only if its smallest period dividing |w| is |w|.
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Periods

If w has a nonempty word-period p, then we can write w = pnp′, where
n ≥ 1 and p′ is a (possibly empty) prefix of p.

Therefore, a word w is unbordered if and only if w = pnp′ implies p′ = ε
and n = 1.

Definition 29

A word w is called periodic if πw ≤ |w|/2. Equivalently, a word is
periodic if it has a border that overlaps with itself in w.

Notice that any non-primitive word is periodic. However, there are
periodic primitive words, e.g., 01010.
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Periods

Theorem 30 (Fine and Wilf)

Let w be a word having positive periods |p| and |q| such that
|p|+ |q| − gcd(|p|, |q|) ≤ |w|. Then w has also period d = gcd(|p|, |q|).

Proof.

For a fixed d, by induction on |p|+ |q|. The base case (|p| = |q| = d) is
trivial. Suppose the statement holds for all integers smaller than |p|+ |q|.
Assume |p| > |q| and let w = uv, where |u| = |p| − d. Now, for any
1 ≤ i ≤ |q| − d, we have ui = wi = wi+|p| = wi+|p|−|q| = ui+|p|−|q|, and
so u has period |p| − |q|. Since u has also period |q| and
gcd(|p| − |q|, |q|) = d, the inductive hypothesis shows that u has period
d. Now, |u| ≥ |q| implies that the prefix q of length |q| of w has period d.
Since w has period |q|, and d divides |q|, it follows that w has period d,
too.
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Periods

The value |p|+ |q| − gcd(|p|, |q|) is the smallest one that makes the
theorem of Fine and Wilf true. As an example showing that the condition
on |w| is necessary, the word 0001000 has periods 4 and 6, but not
2 = gcd(4, 6). This can happen because its length is 7 < 4 + 6− 2 = 8.

A word w with two coprime periods |p| and |q| and length equal to
|w| = |p|+ |q| − 2 is called a central word. For example, 010 is a central
word with coprime periods 2 and 3. Central words are binary palindromic
words.

Fine and Wilf theorem has an immediate corollary in the case of a word
with two coprime periods.

Corollary 31

Let w be a word having coprime periods |p| and |q| and length
|w| > |p|+ |q| − 2. Then w is a power of a single letter.
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Periods

In some applications, one often needs only a weaker version of the Fine
and Wilf’s theorem:

Theorem 32 (Periodicity Lemma, or Weak Fine and Wilf)

If a word w has positive periods |p| and |q| such that |p|+ |q| ≤ |w|, then
gcd(|p|, |q|) is also a period of w.
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Periods

Let us show an example of application of the Fine and Wilf’s theorem:

Lemma 33

Let w be a word over Σ, with |Σ| > 1. Then there exists a letter a ∈ Σ
such that wa is primitive.

Proof.

We give the proof for Σ = {0, 1}. If w = ε, then w0 and w1 are both
primitive. Suppose then |w| > 0, and assume that w0 = vk and w1 = u`

for some primitive words u, v and integers k, ` ≥ 2. Both |u| and |v| are
periods of w, and since k, ` ≥ 2, we have

|w| = k|v| − 1 = `|u| − 1 ≥ 2 max{|u|, |v|} − 1 ≥ |u|+ |v| − 1.

By Fine and Wilf, also d = gcd(|u|, |v|) is a period of w. Since d divides
both |u| and |v|, and u and v are primitive, we conclude that
|u| = |v| = d. Since u and v are prefixes of w, we have u = v,
contradicting the fact that u and v end with different letters.
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Periods

As another application, we have the following

Proposition 34

Suppose that w has two distinct primitive word-periods p and q, and let
w = pnp′ = qmq′, for some p′ prefix of p and q′ prefix of q. Then, n = 1
or m = 1.

Proof.

By contradiction, if n > 1 and m > 1, then |p| ≤ |w|/2 and |q| ≤ |w|/2,
so that |p|+ |q| ≤ |w|. By the Periodicity Lemma, gcd(|u|, |v|) is a
period of w, and thus also a period of p and of q, so that at least one
between p and q has a period smaller than its length and dividing its
length, against the hypothesis that p and q are both primitive.

Hence, a primitive word can have at most one period that is smaller or
equal than half its length.
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Periods

Actually, the Fine and Wilf’s theorem can be seen as a particularization
of the Lyndon–Schützenberger theorem. Indeed, we can state the
following general theorem:

Theorem 35

Let x, y ∈ Σ+. Then the following conditions are equivalent:

1 xy = yx;

2 There exist integers i, j > 0 such that xi = yj ;

3 There exist integers i, j > 0 such that xiyj = yjxi;

4 There exists z ∈ Σ+ such that x = zi and y = zj , for some i, j > 0
(i.e., {x, y} is not a code, i.e., the submonoid {x, y}∗ has rank 1,
i.e., {x, y}∗ = z∗);

5 x∗ ∩ y∗ 6= {ε}
6 xy and yx have a common prefix of length |x|+ |y| − gcd(|x|, |y|)

(Fine and Wilf property);

7 xy and yx have the same minimum period |p| and a common prefix
of length |p| (and |p| = gcd(|x|, |y|));
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Periods

Exercise 36

Write a proof of the previous theorem.

Corollary 37

If xi = yj , with x, y primitive, i, j > 0, then x = y and i = j.

In other words, if x and y are distinct primitive words, then
x∗ ∩ y∗ = {ε}.
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Periods

A beautiful result on the set of periods of a finite word is the following
theorem, due to Guibas and Odlyzko, which states that the set of periods
of a finite word is independent of the alphabet size (provided that the
alphabet has more than one letter).

Theorem 38

For every nonempty word w over any alphabet Σ such that |Σ| > 2, there
exists a word over Σ2 having the same set of periods as w.

Halava, Harju and Ilie gave a constructive proof of this theorem from
which it is possible to construct the binary image of any word in linear
time.
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Periods

The structure of the sets that are period sets of some word (not
exceeding the length of the word) is described in the following

Theorem 39 (Breslauer)

Let S = {0 = p0 < p1 < . . . < ps = n} be a set of integers and let
dh = ph − ph−1, 1 ≤ h ≤ s. Then S is the set of periods of a word of
length n if and only if for each h such that dh + ph ≤ n, one has:

1 ph + dh ∈ S and

2 if dh = kdh+1 for some integer k, then k = 1.

For example, for S = {0, 5, 7, 10} the first-differences are {5, 2, 3}. The
set S is not a valid period set since for h = 2 we have 9 = 7 + 2 ≤ 10
but 9 is not in S, so condition 1 is violated.

For S = {0, 2, 4, 6, 8, 9, 10} condition 1 is not violated, yet it is not a
valid period set since the first-differences are {2, 2, 2, 2, 1, 1} and we have,
for h = 4, 8− 6 = 2(9− 8) and 8 + 2 ≤ 10, so condition 2 is violated.
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Periods

Using the previous theorem, one can construct the set Γn of all valid
period sets of words of length n from the set Γn−1 of valid period sets of
words of length n− 1 by the following algorithm:

For each S ∈ Γn−1, if S ∪ {n} does not violate any of the two conditions
of the theorem, add it to Γn; if S \ {n− 1} ∪ {n} does not violate any of
the two conditions of the theorem, add it to Γn.
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There are interesting connections between the minimum positive period
πw of a word and the maximal length `w of an unbordered factor of w.

For example, since for every factor u of w, one clearly has πu ≤ πw
(every period of w is a period of u), it follows that `w ≤ πw (since
`u = πu = |u| for an unbordered word u).

So, a natural question is if the equality holds. This is not true for any
word. For example, in w = 00110010, one has
`w = |110010| = 6 < πw = 7.

Since any primitive word has at least one unbordered conjugate
(Proposition 12), every periodic word w must contain all the conjugates
of its fractional root (which is primitive). Hence, |w| ≥ 2πw implies
`w = πw.
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Holub and Nowotka solved a problem raised by Ehrenfeucht and Silberger
and proved that if |w| ≥ 7

3`w, then `w = πw.

Note that the following example, provided by Assous and Pouzet,

w = anban+1banban+2banban+1ban

where n ≥ 0, verifies `w = 3n+ 6, πw = 4n+ 7 and |w| = 7n+ 10, that
is, `w < πw and |w| = 7

3`w − 4.
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Palindromes appear frequently in mathematics, theoretical computer
science and also in theoretical physics. In fact, palindromes can be used
to give interesting descriptions of some properties of sequences.

Definition 40

The reversal of a word w = w1w2 · · ·wn is the word w̃ = wnwn−1 · · ·w1

obtained by reversing the order of the letters. That is w̃i = wn−i+1 for
every i = 1, . . . , n. The reversal of the empty word is the empty word.

A word that coincides with its reversal is called a palindrome. For
example, a, 010010, and radar are all palindromes.

Sometimes one distinguishes between even and odd palindromes. An
even palindrome is of the form xx̃ for some word x, while an odd
palindrome is of the form xax̃, for some word x and letter a.
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Remark 41

Every border of a palindrome is a palindrome.

Some structural results about palindromes:

Lemma 42

Let w be a word and n ≥ 0. Then w is a palindrome if and only if so is
wn.

Proposition 43

If w = pq, with p and q palindromes, then w has a conjugate w′ = p′q′,
with p′ and q′ palindromes whose length difference is at most 2.
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Proposition 44

For all nonempty palindromes u, v, the word uv is a palindrome if and
only if both u and v are powers of some palindrome z.

Theorem 45

Every conjugacy class of words contains at most two palindromes. A
conjugacy class contains two palindromes if and only if it contains a word
of the form (xx̃)i, where xx̃ is a primitive word and i ≥ 1.
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Proposition 46

A word is a conjugate of its reversal if and only if it is the concatenation
of two palindromes.

Exercise 47

Prove Proposition 46.
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Every primitive binary word of length greater than 1 has at least two
unbordered conjugates (this will be proved easily in the chapter dedicated
to Lyndon words). The following theorem is due to Holub and Muller:

Theorem 48

Let w be a primitive binary word of length greater than 1. If w has only
two unbordered conjugates, then w is the concatenation of two
palindromes.

The converse of the previous statement does not hold true in general.
For example, w = 00101101 = 00 · 101101 has 4 unbordered conjugates,
namely 10110100, 11010010, 01001011, 00101101.
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The following result has been shown by de Luca and Mignosi.

Proposition 49

Every primitive word has at most one factorization in two nonempty
palindromes.

Notice that there are primitive words that cannot be factored in two
nonempty palindromes, e.g. 0110.
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It is easy to see that a word of length n contains at most n nonempty
factors that are palindromes. Indeed, any position between 1 and n
cannot be the ending position of the first occurrence of more than one
new palindromic factor.

Definition 50

A word is called rich if it contains the maximum number of nonempty
palindromic factors, that is therefore equal to its length.

For example, the word 01001 has length 5 and contains 5 nonempty
palindromic factors, 0, 1, 00, 010 and 1001, so it is rich; whereas the
words 00101100 and 0120 are not rich.

Remark 51

The shortest binary palindrome that is not rich has length 14. An
example is 00110100101100.

Gabriele Fici Combinatorics on Words



Palindromes

Proposition 52

A word w is rich if and only if every prefix (resp., suffix) v of w has one
nonempty palindromic suffix (resp., prefix) unrepeated in v.

For example, let w = 00101100. The prefix 0 has the palindromic suffix 0
that is unrepeated in it; the prefix 00 has the palindromic suffix 00 that is
unrepeated in it; the prefix 001 has the palindromic suffix 1 that is
unrepeated in it; and so on up to the prefix 0010110, which has the
palindromic suffix 0110 that is unrepeated in it; but w itself does not
have this property, hence it not rich, as all its palindromic suffixes (0 and
00) are repeated.
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Corollary 53

If w is rich, then:

1 it has exactly one unrepeated palindromic suffix;

2 all of its factors are rich;

3 its reversal is also rich.

Remark 54

If w is rich, it may have a conjugate that is not rich. For example,
00001011 is rich but its conjugate 00101100 is not.

A word such that all its conjugates are rich is called circularly rich.
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Proposition 55

A word w over Σ2 is not rich if and only if there exists a non-palindromic
word v such that 0v0, 1v1, 0ṽ1 and 1ṽ0 are factors of w.

Rich words are also characterized by a property involving complete
returns. We say that a word w is a complete return to v if v appears in w
exactly twice, once as a prefix and once as a suffix, i.e., with no internal
occurrences.

Proposition 56

A word w is rich if and only if all its factors that are complete returns to
palindromes are palindromes.

For example, 00101100 is not rich since it is a complete return to the
palindrome 00 but itself is not a palindrome.

In particular, then, consecutive occurrences of a letter in a rich word are
separated by palindromes. For example, 0120 is not rich since the factor
separating the two occurrences of 0 is not a palindrome.
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It is possible to count the number of palindromic factors of a word, hence
to decide if a word is rich, in time linear in the length of the word.

The number of rich words of length n over an alphabet of cardinality k is
denoted Rk(n). For the binary alphabet, Rubinchik and Shur proved that
R2(n) ≤ c1.605n for some constant c.

In addition, Guo, Shallit and Shur proved that the number of rich words
grows superpolynomially and conjectured that it grows slightly slower
than n

√
n.

Rukavicka proved that limn→∞
n
√
Rk(n) = 1 for every k, i.e., Rk(n) has

a subexponential growth for every alphabet size.
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